3542 lines
140 KiB
Java
3542 lines
140 KiB
Java
/*
|
|
* Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package com.sun.tools.javac.comp;
|
|
|
|
import java.util.*;
|
|
|
|
import javax.tools.JavaFileManager;
|
|
|
|
import com.sun.tools.javac.code.*;
|
|
import com.sun.tools.javac.code.Attribute.Compound;
|
|
import com.sun.tools.javac.jvm.*;
|
|
import com.sun.tools.javac.tree.*;
|
|
import com.sun.tools.javac.util.*;
|
|
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
|
|
import com.sun.tools.javac.util.List;
|
|
|
|
import com.sun.tools.javac.code.Lint;
|
|
import com.sun.tools.javac.code.Lint.LintCategory;
|
|
import com.sun.tools.javac.code.Type.*;
|
|
import com.sun.tools.javac.code.Symbol.*;
|
|
import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
|
|
import com.sun.tools.javac.comp.Infer.InferenceContext;
|
|
import com.sun.tools.javac.comp.Infer.FreeTypeListener;
|
|
import com.sun.tools.javac.tree.JCTree.*;
|
|
import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
|
|
|
|
import static com.sun.tools.javac.code.Flags.*;
|
|
import static com.sun.tools.javac.code.Flags.ANNOTATION;
|
|
import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
|
|
import static com.sun.tools.javac.code.Kinds.*;
|
|
import static com.sun.tools.javac.code.TypeTag.*;
|
|
import static com.sun.tools.javac.code.TypeTag.WILDCARD;
|
|
|
|
import static com.sun.tools.javac.tree.JCTree.Tag.*;
|
|
|
|
/** Type checking helper class for the attribution phase.
|
|
*
|
|
* <p><b>This is NOT part of any supported API.
|
|
* If you write code that depends on this, you do so at your own risk.
|
|
* This code and its internal interfaces are subject to change or
|
|
* deletion without notice.</b>
|
|
*/
|
|
public class Check {
|
|
protected static final Context.Key<Check> checkKey =
|
|
new Context.Key<Check>();
|
|
|
|
private final Names names;
|
|
private final Log log;
|
|
private final Resolve rs;
|
|
private final Symtab syms;
|
|
private final Enter enter;
|
|
private final DeferredAttr deferredAttr;
|
|
private final Infer infer;
|
|
private final Types types;
|
|
private final JCDiagnostic.Factory diags;
|
|
private boolean warnOnSyntheticConflicts;
|
|
private boolean suppressAbortOnBadClassFile;
|
|
private boolean enableSunApiLintControl;
|
|
private final TreeInfo treeinfo;
|
|
private final JavaFileManager fileManager;
|
|
private final Profile profile;
|
|
private final boolean warnOnAccessToSensitiveMembers;
|
|
|
|
// The set of lint options currently in effect. It is initialized
|
|
// from the context, and then is set/reset as needed by Attr as it
|
|
// visits all the various parts of the trees during attribution.
|
|
private Lint lint;
|
|
|
|
// The method being analyzed in Attr - it is set/reset as needed by
|
|
// Attr as it visits new method declarations.
|
|
private MethodSymbol method;
|
|
|
|
public static Check instance(Context context) {
|
|
Check instance = context.get(checkKey);
|
|
if (instance == null)
|
|
instance = new Check(context);
|
|
return instance;
|
|
}
|
|
|
|
protected Check(Context context) {
|
|
context.put(checkKey, this);
|
|
|
|
names = Names.instance(context);
|
|
dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
|
|
names.FIELD, names.METHOD, names.CONSTRUCTOR,
|
|
names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
|
|
log = Log.instance(context);
|
|
rs = Resolve.instance(context);
|
|
syms = Symtab.instance(context);
|
|
enter = Enter.instance(context);
|
|
deferredAttr = DeferredAttr.instance(context);
|
|
infer = Infer.instance(context);
|
|
types = Types.instance(context);
|
|
diags = JCDiagnostic.Factory.instance(context);
|
|
Options options = Options.instance(context);
|
|
lint = Lint.instance(context);
|
|
treeinfo = TreeInfo.instance(context);
|
|
fileManager = context.get(JavaFileManager.class);
|
|
|
|
Source source = Source.instance(context);
|
|
allowGenerics = source.allowGenerics();
|
|
allowVarargs = source.allowVarargs();
|
|
allowAnnotations = source.allowAnnotations();
|
|
allowCovariantReturns = source.allowCovariantReturns();
|
|
allowSimplifiedVarargs = source.allowSimplifiedVarargs();
|
|
allowDefaultMethods = source.allowDefaultMethods();
|
|
allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
|
|
complexInference = options.isSet("complexinference");
|
|
warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
|
|
suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
|
|
enableSunApiLintControl = options.isSet("enableSunApiLintControl");
|
|
warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
|
|
|
|
Target target = Target.instance(context);
|
|
syntheticNameChar = target.syntheticNameChar();
|
|
|
|
profile = Profile.instance(context);
|
|
|
|
boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
|
|
boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
|
|
boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
|
|
boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
|
|
|
|
deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
|
|
enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
|
|
uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
|
|
enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
|
|
sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
|
|
enforceMandatoryWarnings, "sunapi", null);
|
|
|
|
deferredLintHandler = DeferredLintHandler.instance(context);
|
|
}
|
|
|
|
/** Switch: generics enabled?
|
|
*/
|
|
boolean allowGenerics;
|
|
|
|
/** Switch: varargs enabled?
|
|
*/
|
|
boolean allowVarargs;
|
|
|
|
/** Switch: annotations enabled?
|
|
*/
|
|
boolean allowAnnotations;
|
|
|
|
/** Switch: covariant returns enabled?
|
|
*/
|
|
boolean allowCovariantReturns;
|
|
|
|
/** Switch: simplified varargs enabled?
|
|
*/
|
|
boolean allowSimplifiedVarargs;
|
|
|
|
/** Switch: default methods enabled?
|
|
*/
|
|
boolean allowDefaultMethods;
|
|
|
|
/** Switch: should unrelated return types trigger a method clash?
|
|
*/
|
|
boolean allowStrictMethodClashCheck;
|
|
|
|
/** Switch: -complexinference option set?
|
|
*/
|
|
boolean complexInference;
|
|
|
|
/** Character for synthetic names
|
|
*/
|
|
char syntheticNameChar;
|
|
|
|
/** A table mapping flat names of all compiled classes in this run to their
|
|
* symbols; maintained from outside.
|
|
*/
|
|
public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
|
|
|
|
/** A handler for messages about deprecated usage.
|
|
*/
|
|
private MandatoryWarningHandler deprecationHandler;
|
|
|
|
/** A handler for messages about unchecked or unsafe usage.
|
|
*/
|
|
private MandatoryWarningHandler uncheckedHandler;
|
|
|
|
/** A handler for messages about using proprietary API.
|
|
*/
|
|
private MandatoryWarningHandler sunApiHandler;
|
|
|
|
/** A handler for deferred lint warnings.
|
|
*/
|
|
private DeferredLintHandler deferredLintHandler;
|
|
|
|
/* *************************************************************************
|
|
* Errors and Warnings
|
|
**************************************************************************/
|
|
|
|
Lint setLint(Lint newLint) {
|
|
Lint prev = lint;
|
|
lint = newLint;
|
|
return prev;
|
|
}
|
|
|
|
MethodSymbol setMethod(MethodSymbol newMethod) {
|
|
MethodSymbol prev = method;
|
|
method = newMethod;
|
|
return prev;
|
|
}
|
|
|
|
/** Warn about deprecated symbol.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param sym The deprecated symbol.
|
|
*/
|
|
void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
|
|
if (!lint.isSuppressed(LintCategory.DEPRECATION))
|
|
deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
|
|
}
|
|
|
|
/** Warn about unchecked operation.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param msg A string describing the problem.
|
|
*/
|
|
public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
|
|
if (!lint.isSuppressed(LintCategory.UNCHECKED))
|
|
uncheckedHandler.report(pos, msg, args);
|
|
}
|
|
|
|
/** Warn about unsafe vararg method decl.
|
|
* @param pos Position to be used for error reporting.
|
|
*/
|
|
void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
|
|
if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
|
|
log.warning(LintCategory.VARARGS, pos, key, args);
|
|
}
|
|
|
|
/** Warn about using proprietary API.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param msg A string describing the problem.
|
|
*/
|
|
public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
|
|
if (!lint.isSuppressed(LintCategory.SUNAPI))
|
|
sunApiHandler.report(pos, msg, args);
|
|
}
|
|
|
|
public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
|
|
if (lint.isEnabled(LintCategory.STATIC))
|
|
log.warning(LintCategory.STATIC, pos, msg, args);
|
|
}
|
|
|
|
/**
|
|
* Report any deferred diagnostics.
|
|
*/
|
|
public void reportDeferredDiagnostics() {
|
|
deprecationHandler.reportDeferredDiagnostic();
|
|
uncheckedHandler.reportDeferredDiagnostic();
|
|
sunApiHandler.reportDeferredDiagnostic();
|
|
}
|
|
|
|
|
|
/** Report a failure to complete a class.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param ex The failure to report.
|
|
*/
|
|
public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
|
|
log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
|
|
if (ex instanceof ClassReader.BadClassFile
|
|
&& !suppressAbortOnBadClassFile) throw new Abort();
|
|
else return syms.errType;
|
|
}
|
|
|
|
/** Report an error that wrong type tag was found.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param required An internationalized string describing the type tag
|
|
* required.
|
|
* @param found The type that was found.
|
|
*/
|
|
Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
|
|
// this error used to be raised by the parser,
|
|
// but has been delayed to this point:
|
|
if (found instanceof Type && ((Type)found).hasTag(VOID)) {
|
|
log.error(pos, "illegal.start.of.type");
|
|
return syms.errType;
|
|
}
|
|
log.error(pos, "type.found.req", found, required);
|
|
return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
|
|
}
|
|
|
|
/** Report an error that symbol cannot be referenced before super
|
|
* has been called.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param sym The referenced symbol.
|
|
*/
|
|
void earlyRefError(DiagnosticPosition pos, Symbol sym) {
|
|
log.error(pos, "cant.ref.before.ctor.called", sym);
|
|
}
|
|
|
|
/** Report duplicate declaration error.
|
|
*/
|
|
void duplicateError(DiagnosticPosition pos, Symbol sym) {
|
|
if (!sym.type.isErroneous()) {
|
|
Symbol location = sym.location();
|
|
if (location.kind == MTH &&
|
|
((MethodSymbol)location).isStaticOrInstanceInit()) {
|
|
log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
|
|
kindName(sym.location()), kindName(sym.location().enclClass()),
|
|
sym.location().enclClass());
|
|
} else {
|
|
log.error(pos, "already.defined", kindName(sym), sym,
|
|
kindName(sym.location()), sym.location());
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Report array/varargs duplicate declaration
|
|
*/
|
|
void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
|
|
if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
|
|
log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************
|
|
* duplicate declaration checking
|
|
*************************************************************************/
|
|
|
|
/** Check that variable does not hide variable with same name in
|
|
* immediately enclosing local scope.
|
|
* @param pos Position for error reporting.
|
|
* @param v The symbol.
|
|
* @param s The scope.
|
|
*/
|
|
void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
|
|
if (s.next != null) {
|
|
for (Scope.Entry e = s.next.lookup(v.name);
|
|
e.scope != null && e.sym.owner == v.owner;
|
|
e = e.next()) {
|
|
if (e.sym.kind == VAR &&
|
|
(e.sym.owner.kind & (VAR | MTH)) != 0 &&
|
|
v.name != names.error) {
|
|
duplicateError(pos, e.sym);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that a class or interface does not hide a class or
|
|
* interface with same name in immediately enclosing local scope.
|
|
* @param pos Position for error reporting.
|
|
* @param c The symbol.
|
|
* @param s The scope.
|
|
*/
|
|
void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
|
|
if (s.next != null) {
|
|
for (Scope.Entry e = s.next.lookup(c.name);
|
|
e.scope != null && e.sym.owner == c.owner;
|
|
e = e.next()) {
|
|
if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
|
|
(e.sym.owner.kind & (VAR | MTH)) != 0 &&
|
|
c.name != names.error) {
|
|
duplicateError(pos, e.sym);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that class does not have the same name as one of
|
|
* its enclosing classes, or as a class defined in its enclosing scope.
|
|
* return true if class is unique in its enclosing scope.
|
|
* @param pos Position for error reporting.
|
|
* @param name The class name.
|
|
* @param s The enclosing scope.
|
|
*/
|
|
boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
|
|
for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
|
|
if (e.sym.kind == TYP && e.sym.name != names.error) {
|
|
duplicateError(pos, e.sym);
|
|
return false;
|
|
}
|
|
}
|
|
for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
|
|
if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
|
|
duplicateError(pos, sym);
|
|
return true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Class name generation
|
|
**************************************************************************/
|
|
|
|
/** Return name of local class.
|
|
* This is of the form {@code <enclClass> $ n <classname> }
|
|
* where
|
|
* enclClass is the flat name of the enclosing class,
|
|
* classname is the simple name of the local class
|
|
*/
|
|
Name localClassName(ClassSymbol c) {
|
|
for (int i=1; ; i++) {
|
|
Name flatname = names.
|
|
fromString("" + c.owner.enclClass().flatname +
|
|
syntheticNameChar + i +
|
|
c.name);
|
|
if (compiled.get(flatname) == null) return flatname;
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Type Checking
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* A check context is an object that can be used to perform compatibility
|
|
* checks - depending on the check context, meaning of 'compatibility' might
|
|
* vary significantly.
|
|
*/
|
|
public interface CheckContext {
|
|
/**
|
|
* Is type 'found' compatible with type 'req' in given context
|
|
*/
|
|
boolean compatible(Type found, Type req, Warner warn);
|
|
/**
|
|
* Report a check error
|
|
*/
|
|
void report(DiagnosticPosition pos, JCDiagnostic details);
|
|
/**
|
|
* Obtain a warner for this check context
|
|
*/
|
|
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
|
|
|
|
public Infer.InferenceContext inferenceContext();
|
|
|
|
public DeferredAttr.DeferredAttrContext deferredAttrContext();
|
|
}
|
|
|
|
/**
|
|
* This class represent a check context that is nested within another check
|
|
* context - useful to check sub-expressions. The default behavior simply
|
|
* redirects all method calls to the enclosing check context leveraging
|
|
* the forwarding pattern.
|
|
*/
|
|
static class NestedCheckContext implements CheckContext {
|
|
CheckContext enclosingContext;
|
|
|
|
NestedCheckContext(CheckContext enclosingContext) {
|
|
this.enclosingContext = enclosingContext;
|
|
}
|
|
|
|
public boolean compatible(Type found, Type req, Warner warn) {
|
|
return enclosingContext.compatible(found, req, warn);
|
|
}
|
|
|
|
public void report(DiagnosticPosition pos, JCDiagnostic details) {
|
|
enclosingContext.report(pos, details);
|
|
}
|
|
|
|
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
|
|
return enclosingContext.checkWarner(pos, found, req);
|
|
}
|
|
|
|
public Infer.InferenceContext inferenceContext() {
|
|
return enclosingContext.inferenceContext();
|
|
}
|
|
|
|
public DeferredAttrContext deferredAttrContext() {
|
|
return enclosingContext.deferredAttrContext();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check context to be used when evaluating assignment/return statements
|
|
*/
|
|
CheckContext basicHandler = new CheckContext() {
|
|
public void report(DiagnosticPosition pos, JCDiagnostic details) {
|
|
log.error(pos, "prob.found.req", details);
|
|
}
|
|
public boolean compatible(Type found, Type req, Warner warn) {
|
|
return types.isAssignable(found, req, warn);
|
|
}
|
|
|
|
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
|
|
return convertWarner(pos, found, req);
|
|
}
|
|
|
|
public InferenceContext inferenceContext() {
|
|
return infer.emptyContext;
|
|
}
|
|
|
|
public DeferredAttrContext deferredAttrContext() {
|
|
return deferredAttr.emptyDeferredAttrContext;
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return "CheckContext: basicHandler";
|
|
}
|
|
};
|
|
|
|
/** Check that a given type is assignable to a given proto-type.
|
|
* If it is, return the type, otherwise return errType.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param found The type that was found.
|
|
* @param req The type that was required.
|
|
*/
|
|
Type checkType(DiagnosticPosition pos, Type found, Type req) {
|
|
return checkType(pos, found, req, basicHandler);
|
|
}
|
|
|
|
Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
|
|
final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
|
|
if (inferenceContext.free(req) || inferenceContext.free(found)) {
|
|
inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
|
|
@Override
|
|
public void typesInferred(InferenceContext inferenceContext) {
|
|
checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
|
|
}
|
|
});
|
|
}
|
|
if (req.hasTag(ERROR))
|
|
return req;
|
|
if (req.hasTag(NONE))
|
|
return found;
|
|
if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
|
|
return found;
|
|
} else {
|
|
if (found.isNumeric() && req.isNumeric()) {
|
|
checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
|
|
return types.createErrorType(found);
|
|
}
|
|
checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
|
|
return types.createErrorType(found);
|
|
}
|
|
}
|
|
|
|
/** Check that a given type can be cast to a given target type.
|
|
* Return the result of the cast.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param found The type that is being cast.
|
|
* @param req The target type of the cast.
|
|
*/
|
|
Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
|
|
return checkCastable(pos, found, req, basicHandler);
|
|
}
|
|
Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
|
|
if (types.isCastable(found, req, castWarner(pos, found, req))) {
|
|
return req;
|
|
} else {
|
|
checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
|
|
return types.createErrorType(found);
|
|
}
|
|
}
|
|
|
|
/** Check for redundant casts (i.e. where source type is a subtype of target type)
|
|
* The problem should only be reported for non-292 cast
|
|
*/
|
|
public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
|
|
if (!tree.type.isErroneous()
|
|
&& types.isSameType(tree.expr.type, tree.clazz.type)
|
|
&& !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
|
|
&& !is292targetTypeCast(tree)) {
|
|
deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
|
|
@Override
|
|
public void report() {
|
|
if (lint.isEnabled(Lint.LintCategory.CAST))
|
|
log.warning(Lint.LintCategory.CAST,
|
|
tree.pos(), "redundant.cast", tree.expr.type);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
//where
|
|
private boolean is292targetTypeCast(JCTypeCast tree) {
|
|
boolean is292targetTypeCast = false;
|
|
JCExpression expr = TreeInfo.skipParens(tree.expr);
|
|
if (expr.hasTag(APPLY)) {
|
|
JCMethodInvocation apply = (JCMethodInvocation)expr;
|
|
Symbol sym = TreeInfo.symbol(apply.meth);
|
|
is292targetTypeCast = sym != null &&
|
|
sym.kind == MTH &&
|
|
(sym.flags() & HYPOTHETICAL) != 0;
|
|
}
|
|
return is292targetTypeCast;
|
|
}
|
|
|
|
private static final boolean ignoreAnnotatedCasts = true;
|
|
|
|
/** Check that a type is within some bounds.
|
|
*
|
|
* Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
|
|
* type argument.
|
|
* @param a The type that should be bounded by bs.
|
|
* @param bound The bound.
|
|
*/
|
|
private boolean checkExtends(Type a, Type bound) {
|
|
if (a.isUnbound()) {
|
|
return true;
|
|
} else if (!a.hasTag(WILDCARD)) {
|
|
a = types.cvarUpperBound(a);
|
|
return types.isSubtype(a, bound);
|
|
} else if (a.isExtendsBound()) {
|
|
return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
|
|
} else if (a.isSuperBound()) {
|
|
return !types.notSoftSubtype(types.wildLowerBound(a), bound);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Check that type is different from 'void'.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type to be checked.
|
|
*/
|
|
Type checkNonVoid(DiagnosticPosition pos, Type t) {
|
|
if (t.hasTag(VOID)) {
|
|
log.error(pos, "void.not.allowed.here");
|
|
return types.createErrorType(t);
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
|
|
Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
|
|
if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
|
|
return typeTagError(pos,
|
|
diags.fragment("type.req.class.array"),
|
|
asTypeParam(t));
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
|
|
/** Check that type is a class or interface type.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type to be checked.
|
|
*/
|
|
Type checkClassType(DiagnosticPosition pos, Type t) {
|
|
if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
|
|
return typeTagError(pos,
|
|
diags.fragment("type.req.class"),
|
|
asTypeParam(t));
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
//where
|
|
private Object asTypeParam(Type t) {
|
|
return (t.hasTag(TYPEVAR))
|
|
? diags.fragment("type.parameter", t)
|
|
: t;
|
|
}
|
|
|
|
/** Check that type is a valid qualifier for a constructor reference expression
|
|
*/
|
|
Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
|
|
t = checkClassOrArrayType(pos, t);
|
|
if (t.hasTag(CLASS)) {
|
|
if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
|
|
log.error(pos, "abstract.cant.be.instantiated", t.tsym);
|
|
t = types.createErrorType(t);
|
|
} else if ((t.tsym.flags() & ENUM) != 0) {
|
|
log.error(pos, "enum.cant.be.instantiated");
|
|
t = types.createErrorType(t);
|
|
} else {
|
|
t = checkClassType(pos, t, true);
|
|
}
|
|
} else if (t.hasTag(ARRAY)) {
|
|
if (!types.isReifiable(((ArrayType)t).elemtype)) {
|
|
log.error(pos, "generic.array.creation");
|
|
t = types.createErrorType(t);
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/** Check that type is a class or interface type.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type to be checked.
|
|
* @param noBounds True if type bounds are illegal here.
|
|
*/
|
|
Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
|
|
t = checkClassType(pos, t);
|
|
if (noBounds && t.isParameterized()) {
|
|
List<Type> args = t.getTypeArguments();
|
|
while (args.nonEmpty()) {
|
|
if (args.head.hasTag(WILDCARD))
|
|
return typeTagError(pos,
|
|
diags.fragment("type.req.exact"),
|
|
args.head);
|
|
args = args.tail;
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/** Check that type is a reference type, i.e. a class, interface or array type
|
|
* or a type variable.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type to be checked.
|
|
*/
|
|
Type checkRefType(DiagnosticPosition pos, Type t) {
|
|
if (t.isReference())
|
|
return t;
|
|
else
|
|
return typeTagError(pos,
|
|
diags.fragment("type.req.ref"),
|
|
t);
|
|
}
|
|
|
|
/** Check that each type is a reference type, i.e. a class, interface or array type
|
|
* or a type variable.
|
|
* @param trees Original trees, used for error reporting.
|
|
* @param types The types to be checked.
|
|
*/
|
|
List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
|
|
List<JCExpression> tl = trees;
|
|
for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
|
|
l.head = checkRefType(tl.head.pos(), l.head);
|
|
tl = tl.tail;
|
|
}
|
|
return types;
|
|
}
|
|
|
|
/** Check that type is a null or reference type.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type to be checked.
|
|
*/
|
|
Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
|
|
if (t.isReference() || t.hasTag(BOT))
|
|
return t;
|
|
else
|
|
return typeTagError(pos,
|
|
diags.fragment("type.req.ref"),
|
|
t);
|
|
}
|
|
|
|
/** Check that flag set does not contain elements of two conflicting sets. s
|
|
* Return true if it doesn't.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param flags The set of flags to be checked.
|
|
* @param set1 Conflicting flags set #1.
|
|
* @param set2 Conflicting flags set #2.
|
|
*/
|
|
boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
|
|
if ((flags & set1) != 0 && (flags & set2) != 0) {
|
|
log.error(pos,
|
|
"illegal.combination.of.modifiers",
|
|
asFlagSet(TreeInfo.firstFlag(flags & set1)),
|
|
asFlagSet(TreeInfo.firstFlag(flags & set2)));
|
|
return false;
|
|
} else
|
|
return true;
|
|
}
|
|
|
|
/** Check that usage of diamond operator is correct (i.e. diamond should not
|
|
* be used with non-generic classes or in anonymous class creation expressions)
|
|
*/
|
|
Type checkDiamond(JCNewClass tree, Type t) {
|
|
if (!TreeInfo.isDiamond(tree) ||
|
|
t.isErroneous()) {
|
|
return checkClassType(tree.clazz.pos(), t, true);
|
|
} else if (tree.def != null) {
|
|
log.error(tree.clazz.pos(),
|
|
"cant.apply.diamond.1",
|
|
t, diags.fragment("diamond.and.anon.class", t));
|
|
return types.createErrorType(t);
|
|
} else if (t.tsym.type.getTypeArguments().isEmpty()) {
|
|
log.error(tree.clazz.pos(),
|
|
"cant.apply.diamond.1",
|
|
t, diags.fragment("diamond.non.generic", t));
|
|
return types.createErrorType(t);
|
|
} else if (tree.typeargs != null &&
|
|
tree.typeargs.nonEmpty()) {
|
|
log.error(tree.clazz.pos(),
|
|
"cant.apply.diamond.1",
|
|
t, diags.fragment("diamond.and.explicit.params", t));
|
|
return types.createErrorType(t);
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
|
|
void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
|
|
MethodSymbol m = tree.sym;
|
|
if (!allowSimplifiedVarargs) return;
|
|
boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
|
|
Type varargElemType = null;
|
|
if (m.isVarArgs()) {
|
|
varargElemType = types.elemtype(tree.params.last().type);
|
|
}
|
|
if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
|
|
if (varargElemType != null) {
|
|
log.error(tree,
|
|
"varargs.invalid.trustme.anno",
|
|
syms.trustMeType.tsym,
|
|
diags.fragment("varargs.trustme.on.virtual.varargs", m));
|
|
} else {
|
|
log.error(tree,
|
|
"varargs.invalid.trustme.anno",
|
|
syms.trustMeType.tsym,
|
|
diags.fragment("varargs.trustme.on.non.varargs.meth", m));
|
|
}
|
|
} else if (hasTrustMeAnno && varargElemType != null &&
|
|
types.isReifiable(varargElemType)) {
|
|
warnUnsafeVararg(tree,
|
|
"varargs.redundant.trustme.anno",
|
|
syms.trustMeType.tsym,
|
|
diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
|
|
}
|
|
else if (!hasTrustMeAnno && varargElemType != null &&
|
|
!types.isReifiable(varargElemType)) {
|
|
warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
|
|
}
|
|
}
|
|
//where
|
|
private boolean isTrustMeAllowedOnMethod(Symbol s) {
|
|
return (s.flags() & VARARGS) != 0 &&
|
|
(s.isConstructor() ||
|
|
(s.flags() & (STATIC | FINAL)) != 0);
|
|
}
|
|
|
|
Type checkMethod(final Type mtype,
|
|
final Symbol sym,
|
|
final Env<AttrContext> env,
|
|
final List<JCExpression> argtrees,
|
|
final List<Type> argtypes,
|
|
final boolean useVarargs,
|
|
InferenceContext inferenceContext) {
|
|
// System.out.println("call : " + env.tree);
|
|
// System.out.println("method : " + owntype);
|
|
// System.out.println("actuals: " + argtypes);
|
|
if (inferenceContext.free(mtype)) {
|
|
inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
|
|
public void typesInferred(InferenceContext inferenceContext) {
|
|
checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
|
|
}
|
|
});
|
|
return mtype;
|
|
}
|
|
Type owntype = mtype;
|
|
List<Type> formals = owntype.getParameterTypes();
|
|
List<Type> nonInferred = sym.type.getParameterTypes();
|
|
if (nonInferred.length() != formals.length()) nonInferred = formals;
|
|
Type last = useVarargs ? formals.last() : null;
|
|
if (sym.name == names.init && sym.owner == syms.enumSym) {
|
|
formals = formals.tail.tail;
|
|
nonInferred = nonInferred.tail.tail;
|
|
}
|
|
List<JCExpression> args = argtrees;
|
|
if (args != null) {
|
|
//this is null when type-checking a method reference
|
|
while (formals.head != last) {
|
|
JCTree arg = args.head;
|
|
Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
|
|
assertConvertible(arg, arg.type, formals.head, warn);
|
|
args = args.tail;
|
|
formals = formals.tail;
|
|
nonInferred = nonInferred.tail;
|
|
}
|
|
if (useVarargs) {
|
|
Type varArg = types.elemtype(last);
|
|
while (args.tail != null) {
|
|
JCTree arg = args.head;
|
|
Warner warn = convertWarner(arg.pos(), arg.type, varArg);
|
|
assertConvertible(arg, arg.type, varArg, warn);
|
|
args = args.tail;
|
|
}
|
|
} else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
|
|
allowVarargs) {
|
|
// non-varargs call to varargs method
|
|
Type varParam = owntype.getParameterTypes().last();
|
|
Type lastArg = argtypes.last();
|
|
if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
|
|
!types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
|
|
log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
|
|
types.elemtype(varParam), varParam);
|
|
}
|
|
}
|
|
if (useVarargs) {
|
|
Type argtype = owntype.getParameterTypes().last();
|
|
if (!types.isReifiable(argtype) &&
|
|
(!allowSimplifiedVarargs ||
|
|
sym.attribute(syms.trustMeType.tsym) == null ||
|
|
!isTrustMeAllowedOnMethod(sym))) {
|
|
warnUnchecked(env.tree.pos(),
|
|
"unchecked.generic.array.creation",
|
|
argtype);
|
|
}
|
|
if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
|
|
TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
|
|
}
|
|
}
|
|
PolyKind pkind = (sym.type.hasTag(FORALL) &&
|
|
sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
|
|
PolyKind.POLY : PolyKind.STANDALONE;
|
|
TreeInfo.setPolyKind(env.tree, pkind);
|
|
return owntype;
|
|
}
|
|
//where
|
|
private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
|
|
if (types.isConvertible(actual, formal, warn))
|
|
return;
|
|
|
|
if (formal.isCompound()
|
|
&& types.isSubtype(actual, types.supertype(formal))
|
|
&& types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Check that type 't' is a valid instantiation of a generic class
|
|
* (see JLS 4.5)
|
|
*
|
|
* @param t class type to be checked
|
|
* @return true if 't' is well-formed
|
|
*/
|
|
public boolean checkValidGenericType(Type t) {
|
|
return firstIncompatibleTypeArg(t) == null;
|
|
}
|
|
//WHERE
|
|
private Type firstIncompatibleTypeArg(Type type) {
|
|
List<Type> formals = type.tsym.type.allparams();
|
|
List<Type> actuals = type.allparams();
|
|
List<Type> args = type.getTypeArguments();
|
|
List<Type> forms = type.tsym.type.getTypeArguments();
|
|
ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
|
|
|
|
// For matching pairs of actual argument types `a' and
|
|
// formal type parameters with declared bound `b' ...
|
|
while (args.nonEmpty() && forms.nonEmpty()) {
|
|
// exact type arguments needs to know their
|
|
// bounds (for upper and lower bound
|
|
// calculations). So we create new bounds where
|
|
// type-parameters are replaced with actuals argument types.
|
|
bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
|
|
args = args.tail;
|
|
forms = forms.tail;
|
|
}
|
|
|
|
args = type.getTypeArguments();
|
|
List<Type> tvars_cap = types.substBounds(formals,
|
|
formals,
|
|
types.capture(type).allparams());
|
|
while (args.nonEmpty() && tvars_cap.nonEmpty()) {
|
|
// Let the actual arguments know their bound
|
|
args.head.withTypeVar((TypeVar)tvars_cap.head);
|
|
args = args.tail;
|
|
tvars_cap = tvars_cap.tail;
|
|
}
|
|
|
|
args = type.getTypeArguments();
|
|
List<Type> bounds = bounds_buf.toList();
|
|
|
|
while (args.nonEmpty() && bounds.nonEmpty()) {
|
|
Type actual = args.head;
|
|
if (!isTypeArgErroneous(actual) &&
|
|
!bounds.head.isErroneous() &&
|
|
!checkExtends(actual, bounds.head)) {
|
|
return args.head;
|
|
}
|
|
args = args.tail;
|
|
bounds = bounds.tail;
|
|
}
|
|
|
|
args = type.getTypeArguments();
|
|
bounds = bounds_buf.toList();
|
|
|
|
for (Type arg : types.capture(type).getTypeArguments()) {
|
|
if (arg.hasTag(TYPEVAR) &&
|
|
arg.getUpperBound().isErroneous() &&
|
|
!bounds.head.isErroneous() &&
|
|
!isTypeArgErroneous(args.head)) {
|
|
return args.head;
|
|
}
|
|
bounds = bounds.tail;
|
|
args = args.tail;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
//where
|
|
boolean isTypeArgErroneous(Type t) {
|
|
return isTypeArgErroneous.visit(t);
|
|
}
|
|
|
|
Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
|
|
public Boolean visitType(Type t, Void s) {
|
|
return t.isErroneous();
|
|
}
|
|
@Override
|
|
public Boolean visitTypeVar(TypeVar t, Void s) {
|
|
return visit(t.getUpperBound());
|
|
}
|
|
@Override
|
|
public Boolean visitCapturedType(CapturedType t, Void s) {
|
|
return visit(t.getUpperBound()) ||
|
|
visit(t.getLowerBound());
|
|
}
|
|
@Override
|
|
public Boolean visitWildcardType(WildcardType t, Void s) {
|
|
return visit(t.type);
|
|
}
|
|
};
|
|
|
|
/** Check that given modifiers are legal for given symbol and
|
|
* return modifiers together with any implicit modifiers for that symbol.
|
|
* Warning: we can't use flags() here since this method
|
|
* is called during class enter, when flags() would cause a premature
|
|
* completion.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param flags The set of modifiers given in a definition.
|
|
* @param sym The defined symbol.
|
|
*/
|
|
long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
|
|
long mask;
|
|
long implicit = 0;
|
|
|
|
switch (sym.kind) {
|
|
case VAR:
|
|
if (TreeInfo.isReceiverParam(tree))
|
|
mask = ReceiverParamFlags;
|
|
else if (sym.owner.kind != TYP)
|
|
mask = LocalVarFlags;
|
|
else if ((sym.owner.flags_field & INTERFACE) != 0)
|
|
mask = implicit = InterfaceVarFlags;
|
|
else
|
|
mask = VarFlags;
|
|
break;
|
|
case MTH:
|
|
if (sym.name == names.init) {
|
|
if ((sym.owner.flags_field & ENUM) != 0) {
|
|
// enum constructors cannot be declared public or
|
|
// protected and must be implicitly or explicitly
|
|
// private
|
|
implicit = PRIVATE;
|
|
mask = PRIVATE;
|
|
} else
|
|
mask = ConstructorFlags;
|
|
} else if ((sym.owner.flags_field & INTERFACE) != 0) {
|
|
if ((sym.owner.flags_field & ANNOTATION) != 0) {
|
|
mask = AnnotationTypeElementMask;
|
|
implicit = PUBLIC | ABSTRACT;
|
|
} else if ((flags & (DEFAULT | STATIC)) != 0) {
|
|
mask = InterfaceMethodMask;
|
|
implicit = PUBLIC;
|
|
if ((flags & DEFAULT) != 0) {
|
|
implicit |= ABSTRACT;
|
|
}
|
|
} else {
|
|
mask = implicit = InterfaceMethodFlags;
|
|
}
|
|
} else {
|
|
mask = MethodFlags;
|
|
}
|
|
// Imply STRICTFP if owner has STRICTFP set.
|
|
if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
|
|
((flags) & Flags.DEFAULT) != 0)
|
|
implicit |= sym.owner.flags_field & STRICTFP;
|
|
break;
|
|
case TYP:
|
|
if (sym.isLocal()) {
|
|
mask = LocalClassFlags;
|
|
if (sym.name.isEmpty()) { // Anonymous class
|
|
// Anonymous classes in static methods are themselves static;
|
|
// that's why we admit STATIC here.
|
|
mask |= STATIC;
|
|
// JLS: Anonymous classes are final.
|
|
implicit |= FINAL;
|
|
}
|
|
if ((sym.owner.flags_field & STATIC) == 0 &&
|
|
(flags & ENUM) != 0)
|
|
log.error(pos, "enums.must.be.static");
|
|
} else if (sym.owner.kind == TYP) {
|
|
mask = MemberClassFlags;
|
|
if (sym.owner.owner.kind == PCK ||
|
|
(sym.owner.flags_field & STATIC) != 0)
|
|
mask |= STATIC;
|
|
else if ((flags & ENUM) != 0)
|
|
log.error(pos, "enums.must.be.static");
|
|
// Nested interfaces and enums are always STATIC (Spec ???)
|
|
if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
|
|
} else {
|
|
mask = ClassFlags;
|
|
}
|
|
// Interfaces are always ABSTRACT
|
|
if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
|
|
|
|
if ((flags & ENUM) != 0) {
|
|
// enums can't be declared abstract or final
|
|
mask &= ~(ABSTRACT | FINAL);
|
|
implicit |= implicitEnumFinalFlag(tree);
|
|
}
|
|
// Imply STRICTFP if owner has STRICTFP set.
|
|
implicit |= sym.owner.flags_field & STRICTFP;
|
|
break;
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
long illegal = flags & ExtendedStandardFlags & ~mask;
|
|
if (illegal != 0) {
|
|
if ((illegal & INTERFACE) != 0) {
|
|
log.error(pos, "intf.not.allowed.here");
|
|
mask |= INTERFACE;
|
|
}
|
|
else {
|
|
log.error(pos,
|
|
"mod.not.allowed.here", asFlagSet(illegal));
|
|
}
|
|
}
|
|
else if ((sym.kind == TYP ||
|
|
// ISSUE: Disallowing abstract&private is no longer appropriate
|
|
// in the presence of inner classes. Should it be deleted here?
|
|
checkDisjoint(pos, flags,
|
|
ABSTRACT,
|
|
PRIVATE | STATIC | DEFAULT))
|
|
&&
|
|
checkDisjoint(pos, flags,
|
|
STATIC,
|
|
DEFAULT)
|
|
&&
|
|
checkDisjoint(pos, flags,
|
|
ABSTRACT | INTERFACE,
|
|
FINAL | NATIVE | SYNCHRONIZED)
|
|
&&
|
|
checkDisjoint(pos, flags,
|
|
PUBLIC,
|
|
PRIVATE | PROTECTED)
|
|
&&
|
|
checkDisjoint(pos, flags,
|
|
PRIVATE,
|
|
PUBLIC | PROTECTED)
|
|
&&
|
|
checkDisjoint(pos, flags,
|
|
FINAL,
|
|
VOLATILE)
|
|
&&
|
|
(sym.kind == TYP ||
|
|
checkDisjoint(pos, flags,
|
|
ABSTRACT | NATIVE,
|
|
STRICTFP))) {
|
|
// skip
|
|
}
|
|
return flags & (mask | ~ExtendedStandardFlags) | implicit;
|
|
}
|
|
|
|
|
|
/** Determine if this enum should be implicitly final.
|
|
*
|
|
* If the enum has no specialized enum contants, it is final.
|
|
*
|
|
* If the enum does have specialized enum contants, it is
|
|
* <i>not</i> final.
|
|
*/
|
|
private long implicitEnumFinalFlag(JCTree tree) {
|
|
if (!tree.hasTag(CLASSDEF)) return 0;
|
|
class SpecialTreeVisitor extends JCTree.Visitor {
|
|
boolean specialized;
|
|
SpecialTreeVisitor() {
|
|
this.specialized = false;
|
|
};
|
|
|
|
@Override
|
|
public void visitTree(JCTree tree) { /* no-op */ }
|
|
|
|
@Override
|
|
public void visitVarDef(JCVariableDecl tree) {
|
|
if ((tree.mods.flags & ENUM) != 0) {
|
|
if (tree.init instanceof JCNewClass &&
|
|
((JCNewClass) tree.init).def != null) {
|
|
specialized = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SpecialTreeVisitor sts = new SpecialTreeVisitor();
|
|
JCClassDecl cdef = (JCClassDecl) tree;
|
|
for (JCTree defs: cdef.defs) {
|
|
defs.accept(sts);
|
|
if (sts.specialized) return 0;
|
|
}
|
|
return FINAL;
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Type Validation
|
|
**************************************************************************/
|
|
|
|
/** Validate a type expression. That is,
|
|
* check that all type arguments of a parametric type are within
|
|
* their bounds. This must be done in a second phase after type attribution
|
|
* since a class might have a subclass as type parameter bound. E.g:
|
|
*
|
|
* <pre>{@code
|
|
* class B<A extends C> { ... }
|
|
* class C extends B<C> { ... }
|
|
* }</pre>
|
|
*
|
|
* and we can't make sure that the bound is already attributed because
|
|
* of possible cycles.
|
|
*
|
|
* Visitor method: Validate a type expression, if it is not null, catching
|
|
* and reporting any completion failures.
|
|
*/
|
|
void validate(JCTree tree, Env<AttrContext> env) {
|
|
validate(tree, env, true);
|
|
}
|
|
void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
|
|
new Validator(env).validateTree(tree, checkRaw, true);
|
|
}
|
|
|
|
/** Visitor method: Validate a list of type expressions.
|
|
*/
|
|
void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
|
|
for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
|
|
validate(l.head, env);
|
|
}
|
|
|
|
/** A visitor class for type validation.
|
|
*/
|
|
class Validator extends JCTree.Visitor {
|
|
|
|
boolean checkRaw;
|
|
boolean isOuter;
|
|
Env<AttrContext> env;
|
|
|
|
Validator(Env<AttrContext> env) {
|
|
this.env = env;
|
|
}
|
|
|
|
@Override
|
|
public void visitTypeArray(JCArrayTypeTree tree) {
|
|
validateTree(tree.elemtype, checkRaw, isOuter);
|
|
}
|
|
|
|
@Override
|
|
public void visitTypeApply(JCTypeApply tree) {
|
|
if (tree.type.hasTag(CLASS)) {
|
|
List<JCExpression> args = tree.arguments;
|
|
List<Type> forms = tree.type.tsym.type.getTypeArguments();
|
|
|
|
Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
|
|
if (incompatibleArg != null) {
|
|
for (JCTree arg : tree.arguments) {
|
|
if (arg.type == incompatibleArg) {
|
|
log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
|
|
}
|
|
forms = forms.tail;
|
|
}
|
|
}
|
|
|
|
forms = tree.type.tsym.type.getTypeArguments();
|
|
|
|
boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
|
|
|
|
// For matching pairs of actual argument types `a' and
|
|
// formal type parameters with declared bound `b' ...
|
|
while (args.nonEmpty() && forms.nonEmpty()) {
|
|
validateTree(args.head,
|
|
!(isOuter && is_java_lang_Class),
|
|
false);
|
|
args = args.tail;
|
|
forms = forms.tail;
|
|
}
|
|
|
|
// Check that this type is either fully parameterized, or
|
|
// not parameterized at all.
|
|
if (tree.type.getEnclosingType().isRaw())
|
|
log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
|
|
if (tree.clazz.hasTag(SELECT))
|
|
visitSelectInternal((JCFieldAccess)tree.clazz);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void visitTypeParameter(JCTypeParameter tree) {
|
|
validateTrees(tree.bounds, true, isOuter);
|
|
checkClassBounds(tree.pos(), tree.type);
|
|
}
|
|
|
|
@Override
|
|
public void visitWildcard(JCWildcard tree) {
|
|
if (tree.inner != null)
|
|
validateTree(tree.inner, true, isOuter);
|
|
}
|
|
|
|
@Override
|
|
public void visitSelect(JCFieldAccess tree) {
|
|
if (tree.type.hasTag(CLASS)) {
|
|
visitSelectInternal(tree);
|
|
|
|
// Check that this type is either fully parameterized, or
|
|
// not parameterized at all.
|
|
if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
|
|
log.error(tree.pos(), "improperly.formed.type.param.missing");
|
|
}
|
|
}
|
|
|
|
public void visitSelectInternal(JCFieldAccess tree) {
|
|
if (tree.type.tsym.isStatic() &&
|
|
tree.selected.type.isParameterized()) {
|
|
// The enclosing type is not a class, so we are
|
|
// looking at a static member type. However, the
|
|
// qualifying expression is parameterized.
|
|
log.error(tree.pos(), "cant.select.static.class.from.param.type");
|
|
} else {
|
|
// otherwise validate the rest of the expression
|
|
tree.selected.accept(this);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void visitAnnotatedType(JCAnnotatedType tree) {
|
|
tree.underlyingType.accept(this);
|
|
}
|
|
|
|
@Override
|
|
public void visitTypeIdent(JCPrimitiveTypeTree that) {
|
|
if (that.type.hasTag(TypeTag.VOID)) {
|
|
log.error(that.pos(), "void.not.allowed.here");
|
|
}
|
|
super.visitTypeIdent(that);
|
|
}
|
|
|
|
/** Default visitor method: do nothing.
|
|
*/
|
|
@Override
|
|
public void visitTree(JCTree tree) {
|
|
}
|
|
|
|
public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
|
|
if (tree != null) {
|
|
boolean prevCheckRaw = this.checkRaw;
|
|
this.checkRaw = checkRaw;
|
|
this.isOuter = isOuter;
|
|
|
|
try {
|
|
tree.accept(this);
|
|
if (checkRaw)
|
|
checkRaw(tree, env);
|
|
} catch (CompletionFailure ex) {
|
|
completionError(tree.pos(), ex);
|
|
} finally {
|
|
this.checkRaw = prevCheckRaw;
|
|
}
|
|
}
|
|
}
|
|
|
|
public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
|
|
for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
|
|
validateTree(l.head, checkRaw, isOuter);
|
|
}
|
|
}
|
|
|
|
void checkRaw(JCTree tree, Env<AttrContext> env) {
|
|
if (lint.isEnabled(LintCategory.RAW) &&
|
|
tree.type.hasTag(CLASS) &&
|
|
!TreeInfo.isDiamond(tree) &&
|
|
!withinAnonConstr(env) &&
|
|
tree.type.isRaw()) {
|
|
log.warning(LintCategory.RAW,
|
|
tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
|
|
}
|
|
}
|
|
//where
|
|
private boolean withinAnonConstr(Env<AttrContext> env) {
|
|
return env.enclClass.name.isEmpty() &&
|
|
env.enclMethod != null && env.enclMethod.name == names.init;
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Exception checking
|
|
**************************************************************************/
|
|
|
|
/* The following methods treat classes as sets that contain
|
|
* the class itself and all their subclasses
|
|
*/
|
|
|
|
/** Is given type a subtype of some of the types in given list?
|
|
*/
|
|
boolean subset(Type t, List<Type> ts) {
|
|
for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
|
|
if (types.isSubtype(t, l.head)) return true;
|
|
return false;
|
|
}
|
|
|
|
/** Is given type a subtype or supertype of
|
|
* some of the types in given list?
|
|
*/
|
|
boolean intersects(Type t, List<Type> ts) {
|
|
for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
|
|
if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
|
|
return false;
|
|
}
|
|
|
|
/** Add type set to given type list, unless it is a subclass of some class
|
|
* in the list.
|
|
*/
|
|
List<Type> incl(Type t, List<Type> ts) {
|
|
return subset(t, ts) ? ts : excl(t, ts).prepend(t);
|
|
}
|
|
|
|
/** Remove type set from type set list.
|
|
*/
|
|
List<Type> excl(Type t, List<Type> ts) {
|
|
if (ts.isEmpty()) {
|
|
return ts;
|
|
} else {
|
|
List<Type> ts1 = excl(t, ts.tail);
|
|
if (types.isSubtype(ts.head, t)) return ts1;
|
|
else if (ts1 == ts.tail) return ts;
|
|
else return ts1.prepend(ts.head);
|
|
}
|
|
}
|
|
|
|
/** Form the union of two type set lists.
|
|
*/
|
|
List<Type> union(List<Type> ts1, List<Type> ts2) {
|
|
List<Type> ts = ts1;
|
|
for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
|
|
ts = incl(l.head, ts);
|
|
return ts;
|
|
}
|
|
|
|
/** Form the difference of two type lists.
|
|
*/
|
|
List<Type> diff(List<Type> ts1, List<Type> ts2) {
|
|
List<Type> ts = ts1;
|
|
for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
|
|
ts = excl(l.head, ts);
|
|
return ts;
|
|
}
|
|
|
|
/** Form the intersection of two type lists.
|
|
*/
|
|
public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
|
|
List<Type> ts = List.nil();
|
|
for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
|
|
if (subset(l.head, ts2)) ts = incl(l.head, ts);
|
|
for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
|
|
if (subset(l.head, ts1)) ts = incl(l.head, ts);
|
|
return ts;
|
|
}
|
|
|
|
/** Is exc an exception symbol that need not be declared?
|
|
*/
|
|
boolean isUnchecked(ClassSymbol exc) {
|
|
return
|
|
exc.kind == ERR ||
|
|
exc.isSubClass(syms.errorType.tsym, types) ||
|
|
exc.isSubClass(syms.runtimeExceptionType.tsym, types);
|
|
}
|
|
|
|
/** Is exc an exception type that need not be declared?
|
|
*/
|
|
boolean isUnchecked(Type exc) {
|
|
return
|
|
(exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
|
|
(exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
|
|
exc.hasTag(BOT);
|
|
}
|
|
|
|
/** Same, but handling completion failures.
|
|
*/
|
|
boolean isUnchecked(DiagnosticPosition pos, Type exc) {
|
|
try {
|
|
return isUnchecked(exc);
|
|
} catch (CompletionFailure ex) {
|
|
completionError(pos, ex);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/** Is exc handled by given exception list?
|
|
*/
|
|
boolean isHandled(Type exc, List<Type> handled) {
|
|
return isUnchecked(exc) || subset(exc, handled);
|
|
}
|
|
|
|
/** Return all exceptions in thrown list that are not in handled list.
|
|
* @param thrown The list of thrown exceptions.
|
|
* @param handled The list of handled exceptions.
|
|
*/
|
|
List<Type> unhandled(List<Type> thrown, List<Type> handled) {
|
|
List<Type> unhandled = List.nil();
|
|
for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
|
|
if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
|
|
return unhandled;
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Overriding/Implementation checking
|
|
**************************************************************************/
|
|
|
|
/** The level of access protection given by a flag set,
|
|
* where PRIVATE is highest and PUBLIC is lowest.
|
|
*/
|
|
static int protection(long flags) {
|
|
switch ((short)(flags & AccessFlags)) {
|
|
case PRIVATE: return 3;
|
|
case PROTECTED: return 1;
|
|
default:
|
|
case PUBLIC: return 0;
|
|
case 0: return 2;
|
|
}
|
|
}
|
|
|
|
/** A customized "cannot override" error message.
|
|
* @param m The overriding method.
|
|
* @param other The overridden method.
|
|
* @return An internationalized string.
|
|
*/
|
|
Object cannotOverride(MethodSymbol m, MethodSymbol other) {
|
|
String key;
|
|
if ((other.owner.flags() & INTERFACE) == 0)
|
|
key = "cant.override";
|
|
else if ((m.owner.flags() & INTERFACE) == 0)
|
|
key = "cant.implement";
|
|
else
|
|
key = "clashes.with";
|
|
return diags.fragment(key, m, m.location(), other, other.location());
|
|
}
|
|
|
|
/** A customized "override" warning message.
|
|
* @param m The overriding method.
|
|
* @param other The overridden method.
|
|
* @return An internationalized string.
|
|
*/
|
|
Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
|
|
String key;
|
|
if ((other.owner.flags() & INTERFACE) == 0)
|
|
key = "unchecked.override";
|
|
else if ((m.owner.flags() & INTERFACE) == 0)
|
|
key = "unchecked.implement";
|
|
else
|
|
key = "unchecked.clash.with";
|
|
return diags.fragment(key, m, m.location(), other, other.location());
|
|
}
|
|
|
|
/** A customized "override" warning message.
|
|
* @param m The overriding method.
|
|
* @param other The overridden method.
|
|
* @return An internationalized string.
|
|
*/
|
|
Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
|
|
String key;
|
|
if ((other.owner.flags() & INTERFACE) == 0)
|
|
key = "varargs.override";
|
|
else if ((m.owner.flags() & INTERFACE) == 0)
|
|
key = "varargs.implement";
|
|
else
|
|
key = "varargs.clash.with";
|
|
return diags.fragment(key, m, m.location(), other, other.location());
|
|
}
|
|
|
|
/** Check that this method conforms with overridden method 'other'.
|
|
* where `origin' is the class where checking started.
|
|
* Complications:
|
|
* (1) Do not check overriding of synthetic methods
|
|
* (reason: they might be final).
|
|
* todo: check whether this is still necessary.
|
|
* (2) Admit the case where an interface proxy throws fewer exceptions
|
|
* than the method it implements. Augment the proxy methods with the
|
|
* undeclared exceptions in this case.
|
|
* (3) When generics are enabled, admit the case where an interface proxy
|
|
* has a result type
|
|
* extended by the result type of the method it implements.
|
|
* Change the proxies result type to the smaller type in this case.
|
|
*
|
|
* @param tree The tree from which positions
|
|
* are extracted for errors.
|
|
* @param m The overriding method.
|
|
* @param other The overridden method.
|
|
* @param origin The class of which the overriding method
|
|
* is a member.
|
|
*/
|
|
void checkOverride(JCTree tree,
|
|
MethodSymbol m,
|
|
MethodSymbol other,
|
|
ClassSymbol origin) {
|
|
// Don't check overriding of synthetic methods or by bridge methods.
|
|
if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
|
|
return;
|
|
}
|
|
|
|
// Error if static method overrides instance method (JLS 8.4.6.2).
|
|
if ((m.flags() & STATIC) != 0 &&
|
|
(other.flags() & STATIC) == 0) {
|
|
log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
|
|
cannotOverride(m, other));
|
|
m.flags_field |= BAD_OVERRIDE;
|
|
return;
|
|
}
|
|
|
|
// Error if instance method overrides static or final
|
|
// method (JLS 8.4.6.1).
|
|
if ((other.flags() & FINAL) != 0 ||
|
|
(m.flags() & STATIC) == 0 &&
|
|
(other.flags() & STATIC) != 0) {
|
|
log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
|
|
cannotOverride(m, other),
|
|
asFlagSet(other.flags() & (FINAL | STATIC)));
|
|
m.flags_field |= BAD_OVERRIDE;
|
|
return;
|
|
}
|
|
|
|
if ((m.owner.flags() & ANNOTATION) != 0) {
|
|
// handled in validateAnnotationMethod
|
|
return;
|
|
}
|
|
|
|
// Error if overriding method has weaker access (JLS 8.4.6.3).
|
|
if ((origin.flags() & INTERFACE) == 0 &&
|
|
protection(m.flags()) > protection(other.flags())) {
|
|
log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
|
|
cannotOverride(m, other),
|
|
other.flags() == 0 ?
|
|
"package" :
|
|
asFlagSet(other.flags() & AccessFlags));
|
|
m.flags_field |= BAD_OVERRIDE;
|
|
return;
|
|
}
|
|
|
|
Type mt = types.memberType(origin.type, m);
|
|
Type ot = types.memberType(origin.type, other);
|
|
// Error if overriding result type is different
|
|
// (or, in the case of generics mode, not a subtype) of
|
|
// overridden result type. We have to rename any type parameters
|
|
// before comparing types.
|
|
List<Type> mtvars = mt.getTypeArguments();
|
|
List<Type> otvars = ot.getTypeArguments();
|
|
Type mtres = mt.getReturnType();
|
|
Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
|
|
|
|
overrideWarner.clear();
|
|
boolean resultTypesOK =
|
|
types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
|
|
if (!resultTypesOK) {
|
|
if (!allowCovariantReturns &&
|
|
m.owner != origin &&
|
|
m.owner.isSubClass(other.owner, types)) {
|
|
// allow limited interoperability with covariant returns
|
|
} else {
|
|
log.error(TreeInfo.diagnosticPositionFor(m, tree),
|
|
"override.incompatible.ret",
|
|
cannotOverride(m, other),
|
|
mtres, otres);
|
|
m.flags_field |= BAD_OVERRIDE;
|
|
return;
|
|
}
|
|
} else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
|
|
warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
|
|
"override.unchecked.ret",
|
|
uncheckedOverrides(m, other),
|
|
mtres, otres);
|
|
}
|
|
|
|
// Error if overriding method throws an exception not reported
|
|
// by overridden method.
|
|
List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
|
|
List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
|
|
List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
|
|
if (unhandledErased.nonEmpty()) {
|
|
log.error(TreeInfo.diagnosticPositionFor(m, tree),
|
|
"override.meth.doesnt.throw",
|
|
cannotOverride(m, other),
|
|
unhandledUnerased.head);
|
|
m.flags_field |= BAD_OVERRIDE;
|
|
return;
|
|
}
|
|
else if (unhandledUnerased.nonEmpty()) {
|
|
warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
|
|
"override.unchecked.thrown",
|
|
cannotOverride(m, other),
|
|
unhandledUnerased.head);
|
|
return;
|
|
}
|
|
|
|
// Optional warning if varargs don't agree
|
|
if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
|
|
&& lint.isEnabled(LintCategory.OVERRIDES)) {
|
|
log.warning(TreeInfo.diagnosticPositionFor(m, tree),
|
|
((m.flags() & Flags.VARARGS) != 0)
|
|
? "override.varargs.missing"
|
|
: "override.varargs.extra",
|
|
varargsOverrides(m, other));
|
|
}
|
|
|
|
// Warn if instance method overrides bridge method (compiler spec ??)
|
|
if ((other.flags() & BRIDGE) != 0) {
|
|
log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
|
|
uncheckedOverrides(m, other));
|
|
}
|
|
|
|
// Warn if a deprecated method overridden by a non-deprecated one.
|
|
if (!isDeprecatedOverrideIgnorable(other, origin)) {
|
|
Lint prevLint = setLint(lint.augment(m));
|
|
try {
|
|
checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
|
|
} finally {
|
|
setLint(prevLint);
|
|
}
|
|
}
|
|
}
|
|
// where
|
|
private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
|
|
// If the method, m, is defined in an interface, then ignore the issue if the method
|
|
// is only inherited via a supertype and also implemented in the supertype,
|
|
// because in that case, we will rediscover the issue when examining the method
|
|
// in the supertype.
|
|
// If the method, m, is not defined in an interface, then the only time we need to
|
|
// address the issue is when the method is the supertype implemementation: any other
|
|
// case, we will have dealt with when examining the supertype classes
|
|
ClassSymbol mc = m.enclClass();
|
|
Type st = types.supertype(origin.type);
|
|
if (!st.hasTag(CLASS))
|
|
return true;
|
|
MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
|
|
|
|
if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
|
|
List<Type> intfs = types.interfaces(origin.type);
|
|
return (intfs.contains(mc.type) ? false : (stimpl != null));
|
|
}
|
|
else
|
|
return (stimpl != m);
|
|
}
|
|
|
|
|
|
// used to check if there were any unchecked conversions
|
|
Warner overrideWarner = new Warner();
|
|
|
|
/** Check that a class does not inherit two concrete methods
|
|
* with the same signature.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param site The class type to be checked.
|
|
*/
|
|
public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
|
|
Type sup = types.supertype(site);
|
|
if (!sup.hasTag(CLASS)) return;
|
|
|
|
for (Type t1 = sup;
|
|
t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
|
|
t1 = types.supertype(t1)) {
|
|
for (Scope.Entry e1 = t1.tsym.members().elems;
|
|
e1 != null;
|
|
e1 = e1.sibling) {
|
|
Symbol s1 = e1.sym;
|
|
if (s1.kind != MTH ||
|
|
(s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
|
|
!s1.isInheritedIn(site.tsym, types) ||
|
|
((MethodSymbol)s1).implementation(site.tsym,
|
|
types,
|
|
true) != s1)
|
|
continue;
|
|
Type st1 = types.memberType(t1, s1);
|
|
int s1ArgsLength = st1.getParameterTypes().length();
|
|
if (st1 == s1.type) continue;
|
|
|
|
for (Type t2 = sup;
|
|
t2.hasTag(CLASS);
|
|
t2 = types.supertype(t2)) {
|
|
for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
|
|
e2.scope != null;
|
|
e2 = e2.next()) {
|
|
Symbol s2 = e2.sym;
|
|
if (s2 == s1 ||
|
|
s2.kind != MTH ||
|
|
(s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
|
|
s2.type.getParameterTypes().length() != s1ArgsLength ||
|
|
!s2.isInheritedIn(site.tsym, types) ||
|
|
((MethodSymbol)s2).implementation(site.tsym,
|
|
types,
|
|
true) != s2)
|
|
continue;
|
|
Type st2 = types.memberType(t2, s2);
|
|
if (types.overrideEquivalent(st1, st2))
|
|
log.error(pos, "concrete.inheritance.conflict",
|
|
s1, t1, s2, t2, sup);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that classes (or interfaces) do not each define an abstract
|
|
* method with same name and arguments but incompatible return types.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t1 The first argument type.
|
|
* @param t2 The second argument type.
|
|
*/
|
|
public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
|
|
Type t1,
|
|
Type t2) {
|
|
return checkCompatibleAbstracts(pos, t1, t2,
|
|
types.makeIntersectionType(t1, t2));
|
|
}
|
|
|
|
public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
|
|
Type t1,
|
|
Type t2,
|
|
Type site) {
|
|
if ((site.tsym.flags() & COMPOUND) != 0) {
|
|
// special case for intersections: need to eliminate wildcards in supertypes
|
|
t1 = types.capture(t1);
|
|
t2 = types.capture(t2);
|
|
}
|
|
return firstIncompatibility(pos, t1, t2, site) == null;
|
|
}
|
|
|
|
/** Return the first method which is defined with same args
|
|
* but different return types in two given interfaces, or null if none
|
|
* exists.
|
|
* @param t1 The first type.
|
|
* @param t2 The second type.
|
|
* @param site The most derived type.
|
|
* @returns symbol from t2 that conflicts with one in t1.
|
|
*/
|
|
private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
|
|
Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
|
|
closure(t1, interfaces1);
|
|
Map<TypeSymbol,Type> interfaces2;
|
|
if (t1 == t2)
|
|
interfaces2 = interfaces1;
|
|
else
|
|
closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
|
|
|
|
for (Type t3 : interfaces1.values()) {
|
|
for (Type t4 : interfaces2.values()) {
|
|
Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
|
|
if (s != null) return s;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/** Compute all the supertypes of t, indexed by type symbol. */
|
|
private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
|
|
if (!t.hasTag(CLASS)) return;
|
|
if (typeMap.put(t.tsym, t) == null) {
|
|
closure(types.supertype(t), typeMap);
|
|
for (Type i : types.interfaces(t))
|
|
closure(i, typeMap);
|
|
}
|
|
}
|
|
|
|
/** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
|
|
private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
|
|
if (!t.hasTag(CLASS)) return;
|
|
if (typesSkip.get(t.tsym) != null) return;
|
|
if (typeMap.put(t.tsym, t) == null) {
|
|
closure(types.supertype(t), typesSkip, typeMap);
|
|
for (Type i : types.interfaces(t))
|
|
closure(i, typesSkip, typeMap);
|
|
}
|
|
}
|
|
|
|
/** Return the first method in t2 that conflicts with a method from t1. */
|
|
private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
|
|
for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
|
|
Symbol s1 = e1.sym;
|
|
Type st1 = null;
|
|
if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
|
|
(s1.flags() & SYNTHETIC) != 0) continue;
|
|
Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
|
|
if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
|
|
for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
|
|
Symbol s2 = e2.sym;
|
|
if (s1 == s2) continue;
|
|
if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
|
|
(s2.flags() & SYNTHETIC) != 0) continue;
|
|
if (st1 == null) st1 = types.memberType(t1, s1);
|
|
Type st2 = types.memberType(t2, s2);
|
|
if (types.overrideEquivalent(st1, st2)) {
|
|
List<Type> tvars1 = st1.getTypeArguments();
|
|
List<Type> tvars2 = st2.getTypeArguments();
|
|
Type rt1 = st1.getReturnType();
|
|
Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
|
|
boolean compat =
|
|
types.isSameType(rt1, rt2) ||
|
|
!rt1.isPrimitiveOrVoid() &&
|
|
!rt2.isPrimitiveOrVoid() &&
|
|
(types.covariantReturnType(rt1, rt2, types.noWarnings) ||
|
|
types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
|
|
checkCommonOverriderIn(s1,s2,site);
|
|
if (!compat) {
|
|
log.error(pos, "types.incompatible.diff.ret",
|
|
t1, t2, s2.name +
|
|
"(" + types.memberType(t2, s2).getParameterTypes() + ")");
|
|
return s2;
|
|
}
|
|
} else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
|
|
!checkCommonOverriderIn(s1, s2, site)) {
|
|
log.error(pos,
|
|
"name.clash.same.erasure.no.override",
|
|
s1, s1.location(),
|
|
s2, s2.location());
|
|
return s2;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
//WHERE
|
|
boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
|
|
Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
|
|
Type st1 = types.memberType(site, s1);
|
|
Type st2 = types.memberType(site, s2);
|
|
closure(site, supertypes);
|
|
for (Type t : supertypes.values()) {
|
|
for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
|
|
Symbol s3 = e.sym;
|
|
if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
|
|
Type st3 = types.memberType(site,s3);
|
|
if (types.overrideEquivalent(st3, st1) &&
|
|
types.overrideEquivalent(st3, st2) &&
|
|
types.returnTypeSubstitutable(st3, st1) &&
|
|
types.returnTypeSubstitutable(st3, st2)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** Check that a given method conforms with any method it overrides.
|
|
* @param tree The tree from which positions are extracted
|
|
* for errors.
|
|
* @param m The overriding method.
|
|
*/
|
|
void checkOverride(JCMethodDecl tree, MethodSymbol m) {
|
|
ClassSymbol origin = (ClassSymbol)m.owner;
|
|
if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
|
|
if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
|
|
log.error(tree.pos(), "enum.no.finalize");
|
|
return;
|
|
}
|
|
for (Type t = origin.type; t.hasTag(CLASS);
|
|
t = types.supertype(t)) {
|
|
if (t != origin.type) {
|
|
checkOverride(tree, t, origin, m);
|
|
}
|
|
for (Type t2 : types.interfaces(t)) {
|
|
checkOverride(tree, t2, origin, m);
|
|
}
|
|
}
|
|
|
|
if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
|
|
DiagnosticPosition pos = tree.pos();
|
|
for (JCAnnotation a : tree.getModifiers().annotations) {
|
|
if (a.annotationType.type.tsym == syms.overrideType.tsym) {
|
|
pos = a.pos();
|
|
break;
|
|
}
|
|
}
|
|
log.error(pos, "method.does.not.override.superclass");
|
|
}
|
|
}
|
|
|
|
void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
|
|
TypeSymbol c = site.tsym;
|
|
Scope.Entry e = c.members().lookup(m.name);
|
|
while (e.scope != null) {
|
|
if (m.overrides(e.sym, origin, types, false)) {
|
|
if ((e.sym.flags() & ABSTRACT) == 0) {
|
|
checkOverride(tree, m, (MethodSymbol)e.sym, origin);
|
|
}
|
|
}
|
|
e = e.next();
|
|
}
|
|
}
|
|
|
|
private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
|
|
public boolean accepts(Symbol s) {
|
|
return MethodSymbol.implementation_filter.accepts(s) &&
|
|
(s.flags() & BAD_OVERRIDE) == 0;
|
|
|
|
}
|
|
};
|
|
|
|
public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
|
|
ClassSymbol someClass) {
|
|
/* At present, annotations cannot possibly have a method that is override
|
|
* equivalent with Object.equals(Object) but in any case the condition is
|
|
* fine for completeness.
|
|
*/
|
|
if (someClass == (ClassSymbol)syms.objectType.tsym ||
|
|
someClass.isInterface() || someClass.isEnum() ||
|
|
(someClass.flags() & ANNOTATION) != 0 ||
|
|
(someClass.flags() & ABSTRACT) != 0) return;
|
|
//anonymous inner classes implementing interfaces need especial treatment
|
|
if (someClass.isAnonymous()) {
|
|
List<Type> interfaces = types.interfaces(someClass.type);
|
|
if (interfaces != null && !interfaces.isEmpty() &&
|
|
interfaces.head.tsym == syms.comparatorType.tsym) return;
|
|
}
|
|
checkClassOverrideEqualsAndHash(pos, someClass);
|
|
}
|
|
|
|
private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
|
|
ClassSymbol someClass) {
|
|
if (lint.isEnabled(LintCategory.OVERRIDES)) {
|
|
MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
|
|
.tsym.members().lookup(names.equals).sym;
|
|
MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
|
|
.tsym.members().lookup(names.hashCode).sym;
|
|
boolean overridesEquals = types.implementation(equalsAtObject,
|
|
someClass, false, equalsHasCodeFilter).owner == someClass;
|
|
boolean overridesHashCode = types.implementation(hashCodeAtObject,
|
|
someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
|
|
|
|
if (overridesEquals && !overridesHashCode) {
|
|
log.warning(LintCategory.OVERRIDES, pos,
|
|
"override.equals.but.not.hashcode", someClass);
|
|
}
|
|
}
|
|
}
|
|
|
|
private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
|
|
ClashFilter cf = new ClashFilter(origin.type);
|
|
return (cf.accepts(s1) &&
|
|
cf.accepts(s2) &&
|
|
types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
|
|
}
|
|
|
|
|
|
/** Check that all abstract members of given class have definitions.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param c The class.
|
|
*/
|
|
void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
|
|
MethodSymbol undef = types.firstUnimplementedAbstract(c);
|
|
if (undef != null) {
|
|
MethodSymbol undef1 =
|
|
new MethodSymbol(undef.flags(), undef.name,
|
|
types.memberType(c.type, undef), undef.owner);
|
|
log.error(pos, "does.not.override.abstract",
|
|
c, undef1, undef1.location());
|
|
}
|
|
}
|
|
|
|
void checkNonCyclicDecl(JCClassDecl tree) {
|
|
CycleChecker cc = new CycleChecker();
|
|
cc.scan(tree);
|
|
if (!cc.errorFound && !cc.partialCheck) {
|
|
tree.sym.flags_field |= ACYCLIC;
|
|
}
|
|
}
|
|
|
|
class CycleChecker extends TreeScanner {
|
|
|
|
List<Symbol> seenClasses = List.nil();
|
|
boolean errorFound = false;
|
|
boolean partialCheck = false;
|
|
|
|
private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
|
|
if (sym != null && sym.kind == TYP) {
|
|
Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
|
|
if (classEnv != null) {
|
|
DiagnosticSource prevSource = log.currentSource();
|
|
try {
|
|
log.useSource(classEnv.toplevel.sourcefile);
|
|
scan(classEnv.tree);
|
|
}
|
|
finally {
|
|
log.useSource(prevSource.getFile());
|
|
}
|
|
} else if (sym.kind == TYP) {
|
|
checkClass(pos, sym, List.<JCTree>nil());
|
|
}
|
|
} else {
|
|
//not completed yet
|
|
partialCheck = true;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void visitSelect(JCFieldAccess tree) {
|
|
super.visitSelect(tree);
|
|
checkSymbol(tree.pos(), tree.sym);
|
|
}
|
|
|
|
@Override
|
|
public void visitIdent(JCIdent tree) {
|
|
checkSymbol(tree.pos(), tree.sym);
|
|
}
|
|
|
|
@Override
|
|
public void visitTypeApply(JCTypeApply tree) {
|
|
scan(tree.clazz);
|
|
}
|
|
|
|
@Override
|
|
public void visitTypeArray(JCArrayTypeTree tree) {
|
|
scan(tree.elemtype);
|
|
}
|
|
|
|
@Override
|
|
public void visitClassDef(JCClassDecl tree) {
|
|
List<JCTree> supertypes = List.nil();
|
|
if (tree.getExtendsClause() != null) {
|
|
supertypes = supertypes.prepend(tree.getExtendsClause());
|
|
}
|
|
if (tree.getImplementsClause() != null) {
|
|
for (JCTree intf : tree.getImplementsClause()) {
|
|
supertypes = supertypes.prepend(intf);
|
|
}
|
|
}
|
|
checkClass(tree.pos(), tree.sym, supertypes);
|
|
}
|
|
|
|
void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
|
|
if ((c.flags_field & ACYCLIC) != 0)
|
|
return;
|
|
if (seenClasses.contains(c)) {
|
|
errorFound = true;
|
|
noteCyclic(pos, (ClassSymbol)c);
|
|
} else if (!c.type.isErroneous()) {
|
|
try {
|
|
seenClasses = seenClasses.prepend(c);
|
|
if (c.type.hasTag(CLASS)) {
|
|
if (supertypes.nonEmpty()) {
|
|
scan(supertypes);
|
|
}
|
|
else {
|
|
ClassType ct = (ClassType)c.type;
|
|
if (ct.supertype_field == null ||
|
|
ct.interfaces_field == null) {
|
|
//not completed yet
|
|
partialCheck = true;
|
|
return;
|
|
}
|
|
checkSymbol(pos, ct.supertype_field.tsym);
|
|
for (Type intf : ct.interfaces_field) {
|
|
checkSymbol(pos, intf.tsym);
|
|
}
|
|
}
|
|
if (c.owner.kind == TYP) {
|
|
checkSymbol(pos, c.owner);
|
|
}
|
|
}
|
|
} finally {
|
|
seenClasses = seenClasses.tail;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check for cyclic references. Issue an error if the
|
|
* symbol of the type referred to has a LOCKED flag set.
|
|
*
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type referred to.
|
|
*/
|
|
void checkNonCyclic(DiagnosticPosition pos, Type t) {
|
|
checkNonCyclicInternal(pos, t);
|
|
}
|
|
|
|
|
|
void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
|
|
checkNonCyclic1(pos, t, List.<TypeVar>nil());
|
|
}
|
|
|
|
private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
|
|
final TypeVar tv;
|
|
if (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
|
|
return;
|
|
if (seen.contains(t)) {
|
|
tv = (TypeVar)t.unannotatedType();
|
|
tv.bound = types.createErrorType(t);
|
|
log.error(pos, "cyclic.inheritance", t);
|
|
} else if (t.hasTag(TYPEVAR)) {
|
|
tv = (TypeVar)t.unannotatedType();
|
|
seen = seen.prepend(tv);
|
|
for (Type b : types.getBounds(tv))
|
|
checkNonCyclic1(pos, b, seen);
|
|
}
|
|
}
|
|
|
|
/** Check for cyclic references. Issue an error if the
|
|
* symbol of the type referred to has a LOCKED flag set.
|
|
*
|
|
* @param pos Position to be used for error reporting.
|
|
* @param t The type referred to.
|
|
* @returns True if the check completed on all attributed classes
|
|
*/
|
|
private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
|
|
boolean complete = true; // was the check complete?
|
|
//- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
|
|
Symbol c = t.tsym;
|
|
if ((c.flags_field & ACYCLIC) != 0) return true;
|
|
|
|
if ((c.flags_field & LOCKED) != 0) {
|
|
noteCyclic(pos, (ClassSymbol)c);
|
|
} else if (!c.type.isErroneous()) {
|
|
try {
|
|
c.flags_field |= LOCKED;
|
|
if (c.type.hasTag(CLASS)) {
|
|
ClassType clazz = (ClassType)c.type;
|
|
if (clazz.interfaces_field != null)
|
|
for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
|
|
complete &= checkNonCyclicInternal(pos, l.head);
|
|
if (clazz.supertype_field != null) {
|
|
Type st = clazz.supertype_field;
|
|
if (st != null && st.hasTag(CLASS))
|
|
complete &= checkNonCyclicInternal(pos, st);
|
|
}
|
|
if (c.owner.kind == TYP)
|
|
complete &= checkNonCyclicInternal(pos, c.owner.type);
|
|
}
|
|
} finally {
|
|
c.flags_field &= ~LOCKED;
|
|
}
|
|
}
|
|
if (complete)
|
|
complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
|
|
if (complete) c.flags_field |= ACYCLIC;
|
|
return complete;
|
|
}
|
|
|
|
/** Note that we found an inheritance cycle. */
|
|
private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
|
|
log.error(pos, "cyclic.inheritance", c);
|
|
for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
|
|
l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
|
|
Type st = types.supertype(c.type);
|
|
if (st.hasTag(CLASS))
|
|
((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
|
|
c.type = types.createErrorType(c, c.type);
|
|
c.flags_field |= ACYCLIC;
|
|
}
|
|
|
|
/** Check that all methods which implement some
|
|
* method conform to the method they implement.
|
|
* @param tree The class definition whose members are checked.
|
|
*/
|
|
void checkImplementations(JCClassDecl tree) {
|
|
checkImplementations(tree, tree.sym, tree.sym);
|
|
}
|
|
//where
|
|
/** Check that all methods which implement some
|
|
* method in `ic' conform to the method they implement.
|
|
*/
|
|
void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
|
|
for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
|
|
ClassSymbol lc = (ClassSymbol)l.head.tsym;
|
|
if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
|
|
for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
|
|
if (e.sym.kind == MTH &&
|
|
(e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
|
|
MethodSymbol absmeth = (MethodSymbol)e.sym;
|
|
MethodSymbol implmeth = absmeth.implementation(origin, types, false);
|
|
if (implmeth != null && implmeth != absmeth &&
|
|
(implmeth.owner.flags() & INTERFACE) ==
|
|
(origin.flags() & INTERFACE)) {
|
|
// don't check if implmeth is in a class, yet
|
|
// origin is an interface. This case arises only
|
|
// if implmeth is declared in Object. The reason is
|
|
// that interfaces really don't inherit from
|
|
// Object it's just that the compiler represents
|
|
// things that way.
|
|
checkOverride(tree, implmeth, absmeth, origin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that all abstract methods implemented by a class are
|
|
* mutually compatible.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param c The class whose interfaces are checked.
|
|
*/
|
|
void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
|
|
List<Type> supertypes = types.interfaces(c);
|
|
Type supertype = types.supertype(c);
|
|
if (supertype.hasTag(CLASS) &&
|
|
(supertype.tsym.flags() & ABSTRACT) != 0)
|
|
supertypes = supertypes.prepend(supertype);
|
|
for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
|
|
if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
|
|
!checkCompatibleAbstracts(pos, l.head, l.head, c))
|
|
return;
|
|
for (List<Type> m = supertypes; m != l; m = m.tail)
|
|
if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
|
|
return;
|
|
}
|
|
checkCompatibleConcretes(pos, c);
|
|
}
|
|
|
|
void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
|
|
for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
|
|
for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
|
|
// VM allows methods and variables with differing types
|
|
if (sym.kind == e.sym.kind &&
|
|
types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
|
|
sym != e.sym &&
|
|
(sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
|
|
(sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
|
|
(sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
|
|
syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that all non-override equivalent methods accessible from 'site'
|
|
* are mutually compatible (JLS 8.4.8/9.4.1).
|
|
*
|
|
* @param pos Position to be used for error reporting.
|
|
* @param site The class whose methods are checked.
|
|
* @param sym The method symbol to be checked.
|
|
*/
|
|
void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
|
|
ClashFilter cf = new ClashFilter(site);
|
|
//for each method m1 that is overridden (directly or indirectly)
|
|
//by method 'sym' in 'site'...
|
|
|
|
List<MethodSymbol> potentiallyAmbiguousList = List.nil();
|
|
boolean overridesAny = false;
|
|
for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
|
|
if (!sym.overrides(m1, site.tsym, types, false)) {
|
|
if (m1 == sym) {
|
|
continue;
|
|
}
|
|
|
|
if (!overridesAny) {
|
|
potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (m1 != sym) {
|
|
overridesAny = true;
|
|
potentiallyAmbiguousList = List.nil();
|
|
}
|
|
|
|
//...check each method m2 that is a member of 'site'
|
|
for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
|
|
if (m2 == m1) continue;
|
|
//if (i) the signature of 'sym' is not a subsignature of m1 (seen as
|
|
//a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
|
|
if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
|
|
types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
|
|
sym.flags_field |= CLASH;
|
|
String key = m1 == sym ?
|
|
"name.clash.same.erasure.no.override" :
|
|
"name.clash.same.erasure.no.override.1";
|
|
log.error(pos,
|
|
key,
|
|
sym, sym.location(),
|
|
m2, m2.location(),
|
|
m1, m1.location());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!overridesAny) {
|
|
for (MethodSymbol m: potentiallyAmbiguousList) {
|
|
checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that all static methods accessible from 'site' are
|
|
* mutually compatible (JLS 8.4.8).
|
|
*
|
|
* @param pos Position to be used for error reporting.
|
|
* @param site The class whose methods are checked.
|
|
* @param sym The method symbol to be checked.
|
|
*/
|
|
void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
|
|
ClashFilter cf = new ClashFilter(site);
|
|
//for each method m1 that is a member of 'site'...
|
|
for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
|
|
//if (i) the signature of 'sym' is not a subsignature of m1 (seen as
|
|
//a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
|
|
if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
|
|
if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
|
|
log.error(pos,
|
|
"name.clash.same.erasure.no.hide",
|
|
sym, sym.location(),
|
|
s, s.location());
|
|
return;
|
|
} else {
|
|
checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//where
|
|
private class ClashFilter implements Filter<Symbol> {
|
|
|
|
Type site;
|
|
|
|
ClashFilter(Type site) {
|
|
this.site = site;
|
|
}
|
|
|
|
boolean shouldSkip(Symbol s) {
|
|
return (s.flags() & CLASH) != 0 &&
|
|
s.owner == site.tsym;
|
|
}
|
|
|
|
public boolean accepts(Symbol s) {
|
|
return s.kind == MTH &&
|
|
(s.flags() & SYNTHETIC) == 0 &&
|
|
!shouldSkip(s) &&
|
|
s.isInheritedIn(site.tsym, types) &&
|
|
!s.isConstructor();
|
|
}
|
|
}
|
|
|
|
void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
|
|
DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
|
|
for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
|
|
Assert.check(m.kind == MTH);
|
|
List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
|
|
if (prov.size() > 1) {
|
|
ListBuffer<Symbol> abstracts = new ListBuffer<>();
|
|
ListBuffer<Symbol> defaults = new ListBuffer<>();
|
|
for (MethodSymbol provSym : prov) {
|
|
if ((provSym.flags() & DEFAULT) != 0) {
|
|
defaults = defaults.append(provSym);
|
|
} else if ((provSym.flags() & ABSTRACT) != 0) {
|
|
abstracts = abstracts.append(provSym);
|
|
}
|
|
if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
|
|
//strong semantics - issue an error if two sibling interfaces
|
|
//have two override-equivalent defaults - or if one is abstract
|
|
//and the other is default
|
|
String errKey;
|
|
Symbol s1 = defaults.first();
|
|
Symbol s2;
|
|
if (defaults.size() > 1) {
|
|
errKey = "types.incompatible.unrelated.defaults";
|
|
s2 = defaults.toList().tail.head;
|
|
} else {
|
|
errKey = "types.incompatible.abstract.default";
|
|
s2 = abstracts.first();
|
|
}
|
|
log.error(pos, errKey,
|
|
Kinds.kindName(site.tsym), site,
|
|
m.name, types.memberType(site, m).getParameterTypes(),
|
|
s1.location(), s2.location());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//where
|
|
private class DefaultMethodClashFilter implements Filter<Symbol> {
|
|
|
|
Type site;
|
|
|
|
DefaultMethodClashFilter(Type site) {
|
|
this.site = site;
|
|
}
|
|
|
|
public boolean accepts(Symbol s) {
|
|
return s.kind == MTH &&
|
|
(s.flags() & DEFAULT) != 0 &&
|
|
s.isInheritedIn(site.tsym, types) &&
|
|
!s.isConstructor();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Report warnings for potentially ambiguous method declarations. Two declarations
|
|
* are potentially ambiguous if they feature two unrelated functional interface
|
|
* in same argument position (in which case, a call site passing an implicit
|
|
* lambda would be ambiguous).
|
|
*/
|
|
void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
|
|
MethodSymbol msym1, MethodSymbol msym2) {
|
|
if (msym1 != msym2 &&
|
|
allowDefaultMethods &&
|
|
lint.isEnabled(LintCategory.OVERLOADS) &&
|
|
(msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
|
|
(msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
|
|
Type mt1 = types.memberType(site, msym1);
|
|
Type mt2 = types.memberType(site, msym2);
|
|
//if both generic methods, adjust type variables
|
|
if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
|
|
types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
|
|
mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
|
|
}
|
|
//expand varargs methods if needed
|
|
int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
|
|
List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
|
|
List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
|
|
//if arities don't match, exit
|
|
if (args1.length() != args2.length()) return;
|
|
boolean potentiallyAmbiguous = false;
|
|
while (args1.nonEmpty() && args2.nonEmpty()) {
|
|
Type s = args1.head;
|
|
Type t = args2.head;
|
|
if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
|
|
if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
|
|
types.findDescriptorType(s).getParameterTypes().length() > 0 &&
|
|
types.findDescriptorType(s).getParameterTypes().length() ==
|
|
types.findDescriptorType(t).getParameterTypes().length()) {
|
|
potentiallyAmbiguous = true;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
args1 = args1.tail;
|
|
args2 = args2.tail;
|
|
}
|
|
if (potentiallyAmbiguous) {
|
|
//we found two incompatible functional interfaces with same arity
|
|
//this means a call site passing an implicit lambda would be ambigiuous
|
|
msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
|
|
msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
|
|
log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
|
|
msym1, msym1.location(),
|
|
msym2, msym2.location());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkElemAccessFromSerializableLambda(final JCTree tree) {
|
|
if (warnOnAccessToSensitiveMembers) {
|
|
Symbol sym = TreeInfo.symbol(tree);
|
|
if ((sym.kind & (VAR | MTH)) == 0) {
|
|
return;
|
|
}
|
|
|
|
if (sym.kind == VAR) {
|
|
if ((sym.flags() & PARAMETER) != 0 ||
|
|
sym.isLocal() ||
|
|
sym.name == names._this ||
|
|
sym.name == names._super) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
|
|
isEffectivelyNonPublic(sym)) {
|
|
log.warning(tree.pos(),
|
|
"access.to.sensitive.member.from.serializable.element", sym);
|
|
}
|
|
}
|
|
}
|
|
|
|
private boolean isEffectivelyNonPublic(Symbol sym) {
|
|
if (sym.packge() == syms.rootPackage) {
|
|
return false;
|
|
}
|
|
|
|
while (sym.kind != Kinds.PCK) {
|
|
if ((sym.flags() & PUBLIC) == 0) {
|
|
return true;
|
|
}
|
|
sym = sym.owner;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** Report a conflict between a user symbol and a synthetic symbol.
|
|
*/
|
|
private void syntheticError(DiagnosticPosition pos, Symbol sym) {
|
|
if (!sym.type.isErroneous()) {
|
|
if (warnOnSyntheticConflicts) {
|
|
log.warning(pos, "synthetic.name.conflict", sym, sym.location());
|
|
}
|
|
else {
|
|
log.error(pos, "synthetic.name.conflict", sym, sym.location());
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check that class c does not implement directly or indirectly
|
|
* the same parameterized interface with two different argument lists.
|
|
* @param pos Position to be used for error reporting.
|
|
* @param type The type whose interfaces are checked.
|
|
*/
|
|
void checkClassBounds(DiagnosticPosition pos, Type type) {
|
|
checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
|
|
}
|
|
//where
|
|
/** Enter all interfaces of type `type' into the hash table `seensofar'
|
|
* with their class symbol as key and their type as value. Make
|
|
* sure no class is entered with two different types.
|
|
*/
|
|
void checkClassBounds(DiagnosticPosition pos,
|
|
Map<TypeSymbol,Type> seensofar,
|
|
Type type) {
|
|
if (type.isErroneous()) return;
|
|
for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
|
|
Type it = l.head;
|
|
if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
|
|
|
|
Type oldit = seensofar.put(it.tsym, it);
|
|
if (oldit != null) {
|
|
List<Type> oldparams = oldit.allparams();
|
|
List<Type> newparams = it.allparams();
|
|
if (!types.containsTypeEquivalent(oldparams, newparams))
|
|
log.error(pos, "cant.inherit.diff.arg",
|
|
it.tsym, Type.toString(oldparams),
|
|
Type.toString(newparams));
|
|
}
|
|
checkClassBounds(pos, seensofar, it);
|
|
}
|
|
Type st = types.supertype(type);
|
|
if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
|
|
if (st != Type.noType) checkClassBounds(pos, seensofar, st);
|
|
}
|
|
|
|
/** Enter interface into into set.
|
|
* If it existed already, issue a "repeated interface" error.
|
|
*/
|
|
void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
|
|
if (its.contains(it))
|
|
log.error(pos, "repeated.interface");
|
|
else {
|
|
its.add(it);
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Check annotations
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* Recursively validate annotations values
|
|
*/
|
|
void validateAnnotationTree(JCTree tree) {
|
|
class AnnotationValidator extends TreeScanner {
|
|
@Override
|
|
public void visitAnnotation(JCAnnotation tree) {
|
|
if (!tree.type.isErroneous()) {
|
|
super.visitAnnotation(tree);
|
|
validateAnnotation(tree);
|
|
}
|
|
}
|
|
}
|
|
tree.accept(new AnnotationValidator());
|
|
}
|
|
|
|
/**
|
|
* {@literal
|
|
* Annotation types are restricted to primitives, String, an
|
|
* enum, an annotation, Class, Class<?>, Class<? extends
|
|
* Anything>, arrays of the preceding.
|
|
* }
|
|
*/
|
|
void validateAnnotationType(JCTree restype) {
|
|
// restype may be null if an error occurred, so don't bother validating it
|
|
if (restype != null) {
|
|
validateAnnotationType(restype.pos(), restype.type);
|
|
}
|
|
}
|
|
|
|
void validateAnnotationType(DiagnosticPosition pos, Type type) {
|
|
if (type.isPrimitive()) return;
|
|
if (types.isSameType(type, syms.stringType)) return;
|
|
if ((type.tsym.flags() & Flags.ENUM) != 0) return;
|
|
if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
|
|
if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
|
|
if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
|
|
validateAnnotationType(pos, types.elemtype(type));
|
|
return;
|
|
}
|
|
log.error(pos, "invalid.annotation.member.type");
|
|
}
|
|
|
|
/**
|
|
* "It is also a compile-time error if any method declared in an
|
|
* annotation type has a signature that is override-equivalent to
|
|
* that of any public or protected method declared in class Object
|
|
* or in the interface annotation.Annotation."
|
|
*
|
|
* @jls 9.6 Annotation Types
|
|
*/
|
|
void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
|
|
for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
|
|
Scope s = sup.tsym.members();
|
|
for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
|
|
if (e.sym.kind == MTH &&
|
|
(e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
|
|
types.overrideEquivalent(m.type, e.sym.type))
|
|
log.error(pos, "intf.annotation.member.clash", e.sym, sup);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Check the annotations of a symbol.
|
|
*/
|
|
public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
|
|
for (JCAnnotation a : annotations)
|
|
validateAnnotation(a, s);
|
|
}
|
|
|
|
/** Check the type annotations.
|
|
*/
|
|
public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
|
|
for (JCAnnotation a : annotations)
|
|
validateTypeAnnotation(a, isTypeParameter);
|
|
}
|
|
|
|
/** Check an annotation of a symbol.
|
|
*/
|
|
private void validateAnnotation(JCAnnotation a, Symbol s) {
|
|
validateAnnotationTree(a);
|
|
|
|
if (!annotationApplicable(a, s))
|
|
log.error(a.pos(), "annotation.type.not.applicable");
|
|
|
|
if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
|
|
if (s.kind != TYP) {
|
|
log.error(a.pos(), "bad.functional.intf.anno");
|
|
} else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
|
|
log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
|
|
}
|
|
}
|
|
}
|
|
|
|
public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
|
|
Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
|
|
validateAnnotationTree(a);
|
|
|
|
if (a.hasTag(TYPE_ANNOTATION) &&
|
|
!a.annotationType.type.isErroneous() &&
|
|
!isTypeAnnotation(a, isTypeParameter)) {
|
|
log.error(a.pos(), "annotation.type.not.applicable");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Validate the proposed container 'repeatable' on the
|
|
* annotation type symbol 's'. Report errors at position
|
|
* 'pos'.
|
|
*
|
|
* @param s The (annotation)type declaration annotated with a @Repeatable
|
|
* @param repeatable the @Repeatable on 's'
|
|
* @param pos where to report errors
|
|
*/
|
|
public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
|
|
Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
|
|
|
|
Type t = null;
|
|
List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
|
|
if (!l.isEmpty()) {
|
|
Assert.check(l.head.fst.name == names.value);
|
|
t = ((Attribute.Class)l.head.snd).getValue();
|
|
}
|
|
|
|
if (t == null) {
|
|
// errors should already have been reported during Annotate
|
|
return;
|
|
}
|
|
|
|
validateValue(t.tsym, s, pos);
|
|
validateRetention(t.tsym, s, pos);
|
|
validateDocumented(t.tsym, s, pos);
|
|
validateInherited(t.tsym, s, pos);
|
|
validateTarget(t.tsym, s, pos);
|
|
validateDefault(t.tsym, pos);
|
|
}
|
|
|
|
private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
|
|
Scope.Entry e = container.members().lookup(names.value);
|
|
if (e.scope != null && e.sym.kind == MTH) {
|
|
MethodSymbol m = (MethodSymbol) e.sym;
|
|
Type ret = m.getReturnType();
|
|
if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
|
|
log.error(pos, "invalid.repeatable.annotation.value.return",
|
|
container, ret, types.makeArrayType(contained.type));
|
|
}
|
|
} else {
|
|
log.error(pos, "invalid.repeatable.annotation.no.value", container);
|
|
}
|
|
}
|
|
|
|
private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
|
|
Attribute.RetentionPolicy containerRetention = types.getRetention(container);
|
|
Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
|
|
|
|
boolean error = false;
|
|
switch (containedRetention) {
|
|
case RUNTIME:
|
|
if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
|
|
error = true;
|
|
}
|
|
break;
|
|
case CLASS:
|
|
if (containerRetention == Attribute.RetentionPolicy.SOURCE) {
|
|
error = true;
|
|
}
|
|
}
|
|
if (error ) {
|
|
log.error(pos, "invalid.repeatable.annotation.retention",
|
|
container, containerRetention,
|
|
contained, containedRetention);
|
|
}
|
|
}
|
|
|
|
private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
|
|
if (contained.attribute(syms.documentedType.tsym) != null) {
|
|
if (container.attribute(syms.documentedType.tsym) == null) {
|
|
log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
|
|
}
|
|
}
|
|
}
|
|
|
|
private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
|
|
if (contained.attribute(syms.inheritedType.tsym) != null) {
|
|
if (container.attribute(syms.inheritedType.tsym) == null) {
|
|
log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
|
|
}
|
|
}
|
|
}
|
|
|
|
private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
|
|
// The set of targets the container is applicable to must be a subset
|
|
// (with respect to annotation target semantics) of the set of targets
|
|
// the contained is applicable to. The target sets may be implicit or
|
|
// explicit.
|
|
|
|
Set<Name> containerTargets;
|
|
Attribute.Array containerTarget = getAttributeTargetAttribute(container);
|
|
if (containerTarget == null) {
|
|
containerTargets = getDefaultTargetSet();
|
|
} else {
|
|
containerTargets = new HashSet<Name>();
|
|
for (Attribute app : containerTarget.values) {
|
|
if (!(app instanceof Attribute.Enum)) {
|
|
continue; // recovery
|
|
}
|
|
Attribute.Enum e = (Attribute.Enum)app;
|
|
containerTargets.add(e.value.name);
|
|
}
|
|
}
|
|
|
|
Set<Name> containedTargets;
|
|
Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
|
|
if (containedTarget == null) {
|
|
containedTargets = getDefaultTargetSet();
|
|
} else {
|
|
containedTargets = new HashSet<Name>();
|
|
for (Attribute app : containedTarget.values) {
|
|
if (!(app instanceof Attribute.Enum)) {
|
|
continue; // recovery
|
|
}
|
|
Attribute.Enum e = (Attribute.Enum)app;
|
|
containedTargets.add(e.value.name);
|
|
}
|
|
}
|
|
|
|
if (!isTargetSubsetOf(containerTargets, containedTargets)) {
|
|
log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
|
|
}
|
|
}
|
|
|
|
/* get a set of names for the default target */
|
|
private Set<Name> getDefaultTargetSet() {
|
|
if (defaultTargets == null) {
|
|
Set<Name> targets = new HashSet<Name>();
|
|
targets.add(names.ANNOTATION_TYPE);
|
|
targets.add(names.CONSTRUCTOR);
|
|
targets.add(names.FIELD);
|
|
targets.add(names.LOCAL_VARIABLE);
|
|
targets.add(names.METHOD);
|
|
targets.add(names.PACKAGE);
|
|
targets.add(names.PARAMETER);
|
|
targets.add(names.TYPE);
|
|
|
|
defaultTargets = java.util.Collections.unmodifiableSet(targets);
|
|
}
|
|
|
|
return defaultTargets;
|
|
}
|
|
private Set<Name> defaultTargets;
|
|
|
|
|
|
/** Checks that s is a subset of t, with respect to ElementType
|
|
* semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
|
|
* and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
|
|
* TYPE_PARAMETER}.
|
|
*/
|
|
private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
|
|
// Check that all elements in s are present in t
|
|
for (Name n2 : s) {
|
|
boolean currentElementOk = false;
|
|
for (Name n1 : t) {
|
|
if (n1 == n2) {
|
|
currentElementOk = true;
|
|
break;
|
|
} else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
|
|
currentElementOk = true;
|
|
break;
|
|
} else if (n1 == names.TYPE_USE &&
|
|
(n2 == names.TYPE ||
|
|
n2 == names.ANNOTATION_TYPE ||
|
|
n2 == names.TYPE_PARAMETER)) {
|
|
currentElementOk = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!currentElementOk)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private void validateDefault(Symbol container, DiagnosticPosition pos) {
|
|
// validate that all other elements of containing type has defaults
|
|
Scope scope = container.members();
|
|
for(Symbol elm : scope.getElements()) {
|
|
if (elm.name != names.value &&
|
|
elm.kind == Kinds.MTH &&
|
|
((MethodSymbol)elm).defaultValue == null) {
|
|
log.error(pos,
|
|
"invalid.repeatable.annotation.elem.nondefault",
|
|
container,
|
|
elm);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Is s a method symbol that overrides a method in a superclass? */
|
|
boolean isOverrider(Symbol s) {
|
|
if (s.kind != MTH || s.isStatic())
|
|
return false;
|
|
MethodSymbol m = (MethodSymbol)s;
|
|
TypeSymbol owner = (TypeSymbol)m.owner;
|
|
for (Type sup : types.closure(owner.type)) {
|
|
if (sup == owner.type)
|
|
continue; // skip "this"
|
|
Scope scope = sup.tsym.members();
|
|
for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
|
|
if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** Is the annotation applicable to types? */
|
|
protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
|
|
Attribute.Compound atTarget =
|
|
a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
|
|
if (atTarget == null) {
|
|
// An annotation without @Target is not a type annotation.
|
|
return false;
|
|
}
|
|
|
|
Attribute atValue = atTarget.member(names.value);
|
|
if (!(atValue instanceof Attribute.Array)) {
|
|
return false; // error recovery
|
|
}
|
|
|
|
Attribute.Array arr = (Attribute.Array) atValue;
|
|
for (Attribute app : arr.values) {
|
|
if (!(app instanceof Attribute.Enum)) {
|
|
return false; // recovery
|
|
}
|
|
Attribute.Enum e = (Attribute.Enum) app;
|
|
|
|
if (e.value.name == names.TYPE_USE)
|
|
return true;
|
|
else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** Is the annotation applicable to the symbol? */
|
|
boolean annotationApplicable(JCAnnotation a, Symbol s) {
|
|
Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
|
|
Name[] targets;
|
|
|
|
if (arr == null) {
|
|
targets = defaultTargetMetaInfo(a, s);
|
|
} else {
|
|
// TODO: can we optimize this?
|
|
targets = new Name[arr.values.length];
|
|
for (int i=0; i<arr.values.length; ++i) {
|
|
Attribute app = arr.values[i];
|
|
if (!(app instanceof Attribute.Enum)) {
|
|
return true; // recovery
|
|
}
|
|
Attribute.Enum e = (Attribute.Enum) app;
|
|
targets[i] = e.value.name;
|
|
}
|
|
}
|
|
for (Name target : targets) {
|
|
if (target == names.TYPE)
|
|
{ if (s.kind == TYP) return true; }
|
|
else if (target == names.FIELD)
|
|
{ if (s.kind == VAR && s.owner.kind != MTH) return true; }
|
|
else if (target == names.METHOD)
|
|
{ if (s.kind == MTH && !s.isConstructor()) return true; }
|
|
else if (target == names.PARAMETER)
|
|
{ if (s.kind == VAR &&
|
|
s.owner.kind == MTH &&
|
|
(s.flags() & PARAMETER) != 0)
|
|
return true;
|
|
}
|
|
else if (target == names.CONSTRUCTOR)
|
|
{ if (s.kind == MTH && s.isConstructor()) return true; }
|
|
else if (target == names.LOCAL_VARIABLE)
|
|
{ if (s.kind == VAR && s.owner.kind == MTH &&
|
|
(s.flags() & PARAMETER) == 0)
|
|
return true;
|
|
}
|
|
else if (target == names.ANNOTATION_TYPE)
|
|
{ if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
|
|
return true;
|
|
}
|
|
else if (target == names.PACKAGE)
|
|
{ if (s.kind == PCK) return true; }
|
|
else if (target == names.TYPE_USE)
|
|
{ if (s.kind == TYP ||
|
|
s.kind == VAR ||
|
|
(s.kind == MTH && !s.isConstructor() &&
|
|
!s.type.getReturnType().hasTag(VOID)) ||
|
|
(s.kind == MTH && s.isConstructor()))
|
|
return true;
|
|
}
|
|
else if (target == names.TYPE_PARAMETER)
|
|
{ if (s.kind == TYP && s.type.hasTag(TYPEVAR))
|
|
return true;
|
|
}
|
|
else
|
|
return true; // recovery
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Attribute.Array getAttributeTargetAttribute(Symbol s) {
|
|
Attribute.Compound atTarget =
|
|
s.attribute(syms.annotationTargetType.tsym);
|
|
if (atTarget == null) return null; // ok, is applicable
|
|
Attribute atValue = atTarget.member(names.value);
|
|
if (!(atValue instanceof Attribute.Array)) return null; // error recovery
|
|
return (Attribute.Array) atValue;
|
|
}
|
|
|
|
private final Name[] dfltTargetMeta;
|
|
private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
|
|
return dfltTargetMeta;
|
|
}
|
|
|
|
/** Check an annotation value.
|
|
*
|
|
* @param a The annotation tree to check
|
|
* @return true if this annotation tree is valid, otherwise false
|
|
*/
|
|
public boolean validateAnnotationDeferErrors(JCAnnotation a) {
|
|
boolean res = false;
|
|
final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
|
|
try {
|
|
res = validateAnnotation(a);
|
|
} finally {
|
|
log.popDiagnosticHandler(diagHandler);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
private boolean validateAnnotation(JCAnnotation a) {
|
|
boolean isValid = true;
|
|
// collect an inventory of the annotation elements
|
|
Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
|
|
for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
|
|
e != null;
|
|
e = e.sibling)
|
|
if (e.sym.kind == MTH && e.sym.name != names.clinit &&
|
|
(e.sym.flags() & SYNTHETIC) == 0)
|
|
members.add((MethodSymbol) e.sym);
|
|
|
|
// remove the ones that are assigned values
|
|
for (JCTree arg : a.args) {
|
|
if (!arg.hasTag(ASSIGN)) continue; // recovery
|
|
JCAssign assign = (JCAssign) arg;
|
|
Symbol m = TreeInfo.symbol(assign.lhs);
|
|
if (m == null || m.type.isErroneous()) continue;
|
|
if (!members.remove(m)) {
|
|
isValid = false;
|
|
log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
|
|
m.name, a.type);
|
|
}
|
|
}
|
|
|
|
// all the remaining ones better have default values
|
|
List<Name> missingDefaults = List.nil();
|
|
for (MethodSymbol m : members) {
|
|
if (m.defaultValue == null && !m.type.isErroneous()) {
|
|
missingDefaults = missingDefaults.append(m.name);
|
|
}
|
|
}
|
|
missingDefaults = missingDefaults.reverse();
|
|
if (missingDefaults.nonEmpty()) {
|
|
isValid = false;
|
|
String key = (missingDefaults.size() > 1)
|
|
? "annotation.missing.default.value.1"
|
|
: "annotation.missing.default.value";
|
|
log.error(a.pos(), key, a.type, missingDefaults);
|
|
}
|
|
|
|
// special case: java.lang.annotation.Target must not have
|
|
// repeated values in its value member
|
|
if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
|
|
a.args.tail == null)
|
|
return isValid;
|
|
|
|
if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
|
|
JCAssign assign = (JCAssign) a.args.head;
|
|
Symbol m = TreeInfo.symbol(assign.lhs);
|
|
if (m.name != names.value) return false;
|
|
JCTree rhs = assign.rhs;
|
|
if (!rhs.hasTag(NEWARRAY)) return false;
|
|
JCNewArray na = (JCNewArray) rhs;
|
|
Set<Symbol> targets = new HashSet<Symbol>();
|
|
for (JCTree elem : na.elems) {
|
|
if (!targets.add(TreeInfo.symbol(elem))) {
|
|
isValid = false;
|
|
log.error(elem.pos(), "repeated.annotation.target");
|
|
}
|
|
}
|
|
return isValid;
|
|
}
|
|
|
|
void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
|
|
if (allowAnnotations &&
|
|
lint.isEnabled(LintCategory.DEP_ANN) &&
|
|
(s.flags() & DEPRECATED) != 0 &&
|
|
!syms.deprecatedType.isErroneous() &&
|
|
s.attribute(syms.deprecatedType.tsym) == null) {
|
|
log.warning(LintCategory.DEP_ANN,
|
|
pos, "missing.deprecated.annotation");
|
|
}
|
|
}
|
|
|
|
void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
|
|
if ((s.flags() & DEPRECATED) != 0 &&
|
|
(other.flags() & DEPRECATED) == 0 &&
|
|
s.outermostClass() != other.outermostClass()) {
|
|
deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
|
|
@Override
|
|
public void report() {
|
|
warnDeprecated(pos, s);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
|
|
if ((s.flags() & PROPRIETARY) != 0) {
|
|
deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
|
|
public void report() {
|
|
if (enableSunApiLintControl)
|
|
warnSunApi(pos, "sun.proprietary", s);
|
|
else
|
|
log.mandatoryWarning(pos, "sun.proprietary", s);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void checkProfile(final DiagnosticPosition pos, final Symbol s) {
|
|
if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
|
|
log.error(pos, "not.in.profile", s, profile);
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Check for recursive annotation elements.
|
|
**************************************************************************/
|
|
|
|
/** Check for cycles in the graph of annotation elements.
|
|
*/
|
|
void checkNonCyclicElements(JCClassDecl tree) {
|
|
if ((tree.sym.flags_field & ANNOTATION) == 0) return;
|
|
Assert.check((tree.sym.flags_field & LOCKED) == 0);
|
|
try {
|
|
tree.sym.flags_field |= LOCKED;
|
|
for (JCTree def : tree.defs) {
|
|
if (!def.hasTag(METHODDEF)) continue;
|
|
JCMethodDecl meth = (JCMethodDecl)def;
|
|
checkAnnotationResType(meth.pos(), meth.restype.type);
|
|
}
|
|
} finally {
|
|
tree.sym.flags_field &= ~LOCKED;
|
|
tree.sym.flags_field |= ACYCLIC_ANN;
|
|
}
|
|
}
|
|
|
|
void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
|
|
if ((tsym.flags_field & ACYCLIC_ANN) != 0)
|
|
return;
|
|
if ((tsym.flags_field & LOCKED) != 0) {
|
|
log.error(pos, "cyclic.annotation.element");
|
|
return;
|
|
}
|
|
try {
|
|
tsym.flags_field |= LOCKED;
|
|
for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
|
|
Symbol s = e.sym;
|
|
if (s.kind != Kinds.MTH)
|
|
continue;
|
|
checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
|
|
}
|
|
} finally {
|
|
tsym.flags_field &= ~LOCKED;
|
|
tsym.flags_field |= ACYCLIC_ANN;
|
|
}
|
|
}
|
|
|
|
void checkAnnotationResType(DiagnosticPosition pos, Type type) {
|
|
switch (type.getTag()) {
|
|
case CLASS:
|
|
if ((type.tsym.flags() & ANNOTATION) != 0)
|
|
checkNonCyclicElementsInternal(pos, type.tsym);
|
|
break;
|
|
case ARRAY:
|
|
checkAnnotationResType(pos, types.elemtype(type));
|
|
break;
|
|
default:
|
|
break; // int etc
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Check for cycles in the constructor call graph.
|
|
**************************************************************************/
|
|
|
|
/** Check for cycles in the graph of constructors calling other
|
|
* constructors.
|
|
*/
|
|
void checkCyclicConstructors(JCClassDecl tree) {
|
|
Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
|
|
|
|
// enter each constructor this-call into the map
|
|
for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
|
|
JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
|
|
if (app == null) continue;
|
|
JCMethodDecl meth = (JCMethodDecl) l.head;
|
|
if (TreeInfo.name(app.meth) == names._this) {
|
|
callMap.put(meth.sym, TreeInfo.symbol(app.meth));
|
|
} else {
|
|
meth.sym.flags_field |= ACYCLIC;
|
|
}
|
|
}
|
|
|
|
// Check for cycles in the map
|
|
Symbol[] ctors = new Symbol[0];
|
|
ctors = callMap.keySet().toArray(ctors);
|
|
for (Symbol caller : ctors) {
|
|
checkCyclicConstructor(tree, caller, callMap);
|
|
}
|
|
}
|
|
|
|
/** Look in the map to see if the given constructor is part of a
|
|
* call cycle.
|
|
*/
|
|
private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
|
|
Map<Symbol,Symbol> callMap) {
|
|
if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
|
|
if ((ctor.flags_field & LOCKED) != 0) {
|
|
log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
|
|
"recursive.ctor.invocation");
|
|
} else {
|
|
ctor.flags_field |= LOCKED;
|
|
checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
|
|
ctor.flags_field &= ~LOCKED;
|
|
}
|
|
ctor.flags_field |= ACYCLIC;
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************
|
|
* Miscellaneous
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* Return the opcode of the operator but emit an error if it is an
|
|
* error.
|
|
* @param pos position for error reporting.
|
|
* @param operator an operator
|
|
* @param tag a tree tag
|
|
* @param left type of left hand side
|
|
* @param right type of right hand side
|
|
*/
|
|
int checkOperator(DiagnosticPosition pos,
|
|
OperatorSymbol operator,
|
|
JCTree.Tag tag,
|
|
Type left,
|
|
Type right) {
|
|
if (operator.opcode == ByteCodes.error) {
|
|
log.error(pos,
|
|
"operator.cant.be.applied.1",
|
|
treeinfo.operatorName(tag),
|
|
left, right);
|
|
}
|
|
return operator.opcode;
|
|
}
|
|
|
|
|
|
/**
|
|
* Check for division by integer constant zero
|
|
* @param pos Position for error reporting.
|
|
* @param operator The operator for the expression
|
|
* @param operand The right hand operand for the expression
|
|
*/
|
|
void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
|
|
if (operand.constValue() != null
|
|
&& lint.isEnabled(LintCategory.DIVZERO)
|
|
&& operand.getTag().isSubRangeOf(LONG)
|
|
&& ((Number) (operand.constValue())).longValue() == 0) {
|
|
int opc = ((OperatorSymbol)operator).opcode;
|
|
if (opc == ByteCodes.idiv || opc == ByteCodes.imod
|
|
|| opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
|
|
log.warning(LintCategory.DIVZERO, pos, "div.zero");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check for empty statements after if
|
|
*/
|
|
void checkEmptyIf(JCIf tree) {
|
|
if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
|
|
lint.isEnabled(LintCategory.EMPTY))
|
|
log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
|
|
}
|
|
|
|
/** Check that symbol is unique in given scope.
|
|
* @param pos Position for error reporting.
|
|
* @param sym The symbol.
|
|
* @param s The scope.
|
|
*/
|
|
boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
|
|
if (sym.type.isErroneous())
|
|
return true;
|
|
if (sym.owner.name == names.any) return false;
|
|
for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
|
|
if (sym != e.sym &&
|
|
(e.sym.flags() & CLASH) == 0 &&
|
|
sym.kind == e.sym.kind &&
|
|
sym.name != names.error &&
|
|
(sym.kind != MTH ||
|
|
types.hasSameArgs(sym.type, e.sym.type) ||
|
|
types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
|
|
if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
|
|
varargsDuplicateError(pos, sym, e.sym);
|
|
return true;
|
|
} else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
|
|
duplicateErasureError(pos, sym, e.sym);
|
|
sym.flags_field |= CLASH;
|
|
return true;
|
|
} else {
|
|
duplicateError(pos, e.sym);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Report duplicate declaration error.
|
|
*/
|
|
void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
|
|
if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
|
|
log.error(pos, "name.clash.same.erasure", sym1, sym2);
|
|
}
|
|
}
|
|
|
|
/** Check that single-type import is not already imported or top-level defined,
|
|
* but make an exception for two single-type imports which denote the same type.
|
|
* @param pos Position for error reporting.
|
|
* @param sym The symbol.
|
|
* @param s The scope
|
|
*/
|
|
boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
|
|
return checkUniqueImport(pos, sym, s, false);
|
|
}
|
|
|
|
/** Check that static single-type import is not already imported or top-level defined,
|
|
* but make an exception for two single-type imports which denote the same type.
|
|
* @param pos Position for error reporting.
|
|
* @param sym The symbol.
|
|
* @param s The scope
|
|
*/
|
|
boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
|
|
return checkUniqueImport(pos, sym, s, true);
|
|
}
|
|
|
|
/** Check that single-type import is not already imported or top-level defined,
|
|
* but make an exception for two single-type imports which denote the same type.
|
|
* @param pos Position for error reporting.
|
|
* @param sym The symbol.
|
|
* @param s The scope.
|
|
* @param staticImport Whether or not this was a static import
|
|
*/
|
|
private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
|
|
for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
|
|
// is encountered class entered via a class declaration?
|
|
boolean isClassDecl = e.scope == s;
|
|
if ((isClassDecl || sym != e.sym) &&
|
|
sym.kind == e.sym.kind &&
|
|
sym.name != names.error &&
|
|
(!staticImport || !e.isStaticallyImported())) {
|
|
if (!e.sym.type.isErroneous()) {
|
|
if (!isClassDecl) {
|
|
if (staticImport)
|
|
log.error(pos, "already.defined.static.single.import", e.sym);
|
|
else
|
|
log.error(pos, "already.defined.single.import", e.sym);
|
|
}
|
|
else if (sym != e.sym)
|
|
log.error(pos, "already.defined.this.unit", e.sym);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Check that a qualified name is in canonical form (for import decls).
|
|
*/
|
|
public void checkCanonical(JCTree tree) {
|
|
if (!isCanonical(tree))
|
|
log.error(tree.pos(), "import.requires.canonical",
|
|
TreeInfo.symbol(tree));
|
|
}
|
|
// where
|
|
private boolean isCanonical(JCTree tree) {
|
|
while (tree.hasTag(SELECT)) {
|
|
JCFieldAccess s = (JCFieldAccess) tree;
|
|
if (s.sym.owner != TreeInfo.symbol(s.selected))
|
|
return false;
|
|
tree = s.selected;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Check that an auxiliary class is not accessed from any other file than its own.
|
|
*/
|
|
void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
|
|
if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
|
|
(c.flags() & AUXILIARY) != 0 &&
|
|
rs.isAccessible(env, c) &&
|
|
!fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
|
|
{
|
|
log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
|
|
c, c.sourcefile);
|
|
}
|
|
}
|
|
|
|
private class ConversionWarner extends Warner {
|
|
final String uncheckedKey;
|
|
final Type found;
|
|
final Type expected;
|
|
public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
|
|
super(pos);
|
|
this.uncheckedKey = uncheckedKey;
|
|
this.found = found;
|
|
this.expected = expected;
|
|
}
|
|
|
|
@Override
|
|
public void warn(LintCategory lint) {
|
|
boolean warned = this.warned;
|
|
super.warn(lint);
|
|
if (warned) return; // suppress redundant diagnostics
|
|
switch (lint) {
|
|
case UNCHECKED:
|
|
Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
|
|
break;
|
|
case VARARGS:
|
|
if (method != null &&
|
|
method.attribute(syms.trustMeType.tsym) != null &&
|
|
isTrustMeAllowedOnMethod(method) &&
|
|
!types.isReifiable(method.type.getParameterTypes().last())) {
|
|
Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
|
|
}
|
|
break;
|
|
default:
|
|
throw new AssertionError("Unexpected lint: " + lint);
|
|
}
|
|
}
|
|
}
|
|
|
|
public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
|
|
return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
|
|
}
|
|
|
|
public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
|
|
return new ConversionWarner(pos, "unchecked.assign", found, expected);
|
|
}
|
|
|
|
public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
|
|
Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
|
|
|
|
if (functionalType != null) {
|
|
try {
|
|
types.findDescriptorSymbol((TypeSymbol)cs);
|
|
} catch (Types.FunctionDescriptorLookupError ex) {
|
|
DiagnosticPosition pos = tree.pos();
|
|
for (JCAnnotation a : tree.getModifiers().annotations) {
|
|
if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
|
|
pos = a.pos();
|
|
break;
|
|
}
|
|
}
|
|
log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
|
|
}
|
|
}
|
|
}
|
|
}
|