3966 lines
164 KiB
Java
3966 lines
164 KiB
Java
/*
|
|
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package com.sun.tools.javac.comp;
|
|
|
|
import java.util.*;
|
|
|
|
import com.sun.tools.javac.code.*;
|
|
import com.sun.tools.javac.code.Type.AnnotatedType;
|
|
import com.sun.tools.javac.jvm.*;
|
|
import com.sun.tools.javac.main.Option.PkgInfo;
|
|
import com.sun.tools.javac.tree.*;
|
|
import com.sun.tools.javac.util.*;
|
|
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
|
|
import com.sun.tools.javac.util.List;
|
|
|
|
import com.sun.tools.javac.code.Symbol.*;
|
|
import com.sun.tools.javac.tree.JCTree.*;
|
|
import com.sun.tools.javac.code.Type.*;
|
|
|
|
import com.sun.tools.javac.jvm.Target;
|
|
import com.sun.tools.javac.tree.EndPosTable;
|
|
|
|
import static com.sun.tools.javac.code.Flags.*;
|
|
import static com.sun.tools.javac.code.Flags.BLOCK;
|
|
import static com.sun.tools.javac.code.Kinds.*;
|
|
import static com.sun.tools.javac.code.TypeTag.*;
|
|
import static com.sun.tools.javac.jvm.ByteCodes.*;
|
|
import static com.sun.tools.javac.tree.JCTree.Tag.*;
|
|
|
|
/** This pass translates away some syntactic sugar: inner classes,
|
|
* class literals, assertions, foreach loops, etc.
|
|
*
|
|
* <p><b>This is NOT part of any supported API.
|
|
* If you write code that depends on this, you do so at your own risk.
|
|
* This code and its internal interfaces are subject to change or
|
|
* deletion without notice.</b>
|
|
*/
|
|
public class Lower extends TreeTranslator {
|
|
protected static final Context.Key<Lower> lowerKey =
|
|
new Context.Key<Lower>();
|
|
|
|
public static Lower instance(Context context) {
|
|
Lower instance = context.get(lowerKey);
|
|
if (instance == null)
|
|
instance = new Lower(context);
|
|
return instance;
|
|
}
|
|
|
|
private Names names;
|
|
private Log log;
|
|
private Symtab syms;
|
|
private Resolve rs;
|
|
private Check chk;
|
|
private Attr attr;
|
|
private TreeMaker make;
|
|
private DiagnosticPosition make_pos;
|
|
private ClassWriter writer;
|
|
private ClassReader reader;
|
|
private ConstFold cfolder;
|
|
private Target target;
|
|
private Source source;
|
|
private final TypeEnvs typeEnvs;
|
|
private boolean allowEnums;
|
|
private final Name dollarAssertionsDisabled;
|
|
private final Name classDollar;
|
|
private Types types;
|
|
private boolean debugLower;
|
|
private PkgInfo pkginfoOpt;
|
|
|
|
protected Lower(Context context) {
|
|
context.put(lowerKey, this);
|
|
names = Names.instance(context);
|
|
log = Log.instance(context);
|
|
syms = Symtab.instance(context);
|
|
rs = Resolve.instance(context);
|
|
chk = Check.instance(context);
|
|
attr = Attr.instance(context);
|
|
make = TreeMaker.instance(context);
|
|
writer = ClassWriter.instance(context);
|
|
reader = ClassReader.instance(context);
|
|
cfolder = ConstFold.instance(context);
|
|
target = Target.instance(context);
|
|
source = Source.instance(context);
|
|
typeEnvs = TypeEnvs.instance(context);
|
|
allowEnums = source.allowEnums();
|
|
dollarAssertionsDisabled = names.
|
|
fromString(target.syntheticNameChar() + "assertionsDisabled");
|
|
classDollar = names.
|
|
fromString("class" + target.syntheticNameChar());
|
|
|
|
types = Types.instance(context);
|
|
Options options = Options.instance(context);
|
|
debugLower = options.isSet("debuglower");
|
|
pkginfoOpt = PkgInfo.get(options);
|
|
}
|
|
|
|
/** The currently enclosing class.
|
|
*/
|
|
ClassSymbol currentClass;
|
|
|
|
/** A queue of all translated classes.
|
|
*/
|
|
ListBuffer<JCTree> translated;
|
|
|
|
/** Environment for symbol lookup, set by translateTopLevelClass.
|
|
*/
|
|
Env<AttrContext> attrEnv;
|
|
|
|
/** A hash table mapping syntax trees to their ending source positions.
|
|
*/
|
|
EndPosTable endPosTable;
|
|
|
|
/**************************************************************************
|
|
* Global mappings
|
|
*************************************************************************/
|
|
|
|
/** A hash table mapping local classes to their definitions.
|
|
*/
|
|
Map<ClassSymbol, JCClassDecl> classdefs;
|
|
|
|
/** A hash table mapping local classes to a list of pruned trees.
|
|
*/
|
|
public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
|
|
|
|
/** A hash table mapping virtual accessed symbols in outer subclasses
|
|
* to the actually referred symbol in superclasses.
|
|
*/
|
|
Map<Symbol,Symbol> actualSymbols;
|
|
|
|
/** The current method definition.
|
|
*/
|
|
JCMethodDecl currentMethodDef;
|
|
|
|
/** The current method symbol.
|
|
*/
|
|
MethodSymbol currentMethodSym;
|
|
|
|
/** The currently enclosing outermost class definition.
|
|
*/
|
|
JCClassDecl outermostClassDef;
|
|
|
|
/** The currently enclosing outermost member definition.
|
|
*/
|
|
JCTree outermostMemberDef;
|
|
|
|
/** A map from local variable symbols to their translation (as per LambdaToMethod).
|
|
* This is required when a capturing local class is created from a lambda (in which
|
|
* case the captured symbols should be replaced with the translated lambda symbols).
|
|
*/
|
|
Map<Symbol, Symbol> lambdaTranslationMap = null;
|
|
|
|
/** A navigator class for assembling a mapping from local class symbols
|
|
* to class definition trees.
|
|
* There is only one case; all other cases simply traverse down the tree.
|
|
*/
|
|
class ClassMap extends TreeScanner {
|
|
|
|
/** All encountered class defs are entered into classdefs table.
|
|
*/
|
|
public void visitClassDef(JCClassDecl tree) {
|
|
classdefs.put(tree.sym, tree);
|
|
super.visitClassDef(tree);
|
|
}
|
|
}
|
|
ClassMap classMap = new ClassMap();
|
|
|
|
/** Map a class symbol to its definition.
|
|
* @param c The class symbol of which we want to determine the definition.
|
|
*/
|
|
JCClassDecl classDef(ClassSymbol c) {
|
|
// First lookup the class in the classdefs table.
|
|
JCClassDecl def = classdefs.get(c);
|
|
if (def == null && outermostMemberDef != null) {
|
|
// If this fails, traverse outermost member definition, entering all
|
|
// local classes into classdefs, and try again.
|
|
classMap.scan(outermostMemberDef);
|
|
def = classdefs.get(c);
|
|
}
|
|
if (def == null) {
|
|
// If this fails, traverse outermost class definition, entering all
|
|
// local classes into classdefs, and try again.
|
|
classMap.scan(outermostClassDef);
|
|
def = classdefs.get(c);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
/** A hash table mapping class symbols to lists of free variables.
|
|
* accessed by them. Only free variables of the method immediately containing
|
|
* a class are associated with that class.
|
|
*/
|
|
Map<ClassSymbol,List<VarSymbol>> freevarCache;
|
|
|
|
/** A navigator class for collecting the free variables accessed
|
|
* from a local class. There is only one case; all other cases simply
|
|
* traverse down the tree. This class doesn't deal with the specific
|
|
* of Lower - it's an abstract visitor that is meant to be reused in
|
|
* order to share the local variable capture logic.
|
|
*/
|
|
abstract class BasicFreeVarCollector extends TreeScanner {
|
|
|
|
/** Add all free variables of class c to fvs list
|
|
* unless they are already there.
|
|
*/
|
|
abstract void addFreeVars(ClassSymbol c);
|
|
|
|
/** If tree refers to a variable in owner of local class, add it to
|
|
* free variables list.
|
|
*/
|
|
public void visitIdent(JCIdent tree) {
|
|
visitSymbol(tree.sym);
|
|
}
|
|
// where
|
|
abstract void visitSymbol(Symbol _sym);
|
|
|
|
/** If tree refers to a class instance creation expression
|
|
* add all free variables of the freshly created class.
|
|
*/
|
|
public void visitNewClass(JCNewClass tree) {
|
|
ClassSymbol c = (ClassSymbol)tree.constructor.owner;
|
|
addFreeVars(c);
|
|
super.visitNewClass(tree);
|
|
}
|
|
|
|
/** If tree refers to a superclass constructor call,
|
|
* add all free variables of the superclass.
|
|
*/
|
|
public void visitApply(JCMethodInvocation tree) {
|
|
if (TreeInfo.name(tree.meth) == names._super) {
|
|
addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
|
|
}
|
|
super.visitApply(tree);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Lower-specific subclass of {@code BasicFreeVarCollector}.
|
|
*/
|
|
class FreeVarCollector extends BasicFreeVarCollector {
|
|
|
|
/** The owner of the local class.
|
|
*/
|
|
Symbol owner;
|
|
|
|
/** The local class.
|
|
*/
|
|
ClassSymbol clazz;
|
|
|
|
/** The list of owner's variables accessed from within the local class,
|
|
* without any duplicates.
|
|
*/
|
|
List<VarSymbol> fvs;
|
|
|
|
FreeVarCollector(ClassSymbol clazz) {
|
|
this.clazz = clazz;
|
|
this.owner = clazz.owner;
|
|
this.fvs = List.nil();
|
|
}
|
|
|
|
/** Add free variable to fvs list unless it is already there.
|
|
*/
|
|
private void addFreeVar(VarSymbol v) {
|
|
for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
|
|
if (l.head == v) return;
|
|
fvs = fvs.prepend(v);
|
|
}
|
|
|
|
@Override
|
|
void addFreeVars(ClassSymbol c) {
|
|
List<VarSymbol> fvs = freevarCache.get(c);
|
|
if (fvs != null) {
|
|
for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
|
|
addFreeVar(l.head);
|
|
}
|
|
}
|
|
}
|
|
|
|
@Override
|
|
void visitSymbol(Symbol _sym) {
|
|
Symbol sym = _sym;
|
|
if (sym.kind == VAR || sym.kind == MTH) {
|
|
while (sym != null && sym.owner != owner)
|
|
sym = proxies.lookup(proxyName(sym.name)).sym;
|
|
if (sym != null && sym.owner == owner) {
|
|
VarSymbol v = (VarSymbol)sym;
|
|
if (v.getConstValue() == null) {
|
|
addFreeVar(v);
|
|
}
|
|
} else {
|
|
if (outerThisStack.head != null &&
|
|
outerThisStack.head != _sym)
|
|
visitSymbol(outerThisStack.head);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** If tree refers to a class instance creation expression
|
|
* add all free variables of the freshly created class.
|
|
*/
|
|
public void visitNewClass(JCNewClass tree) {
|
|
ClassSymbol c = (ClassSymbol)tree.constructor.owner;
|
|
if (tree.encl == null &&
|
|
c.hasOuterInstance() &&
|
|
outerThisStack.head != null)
|
|
visitSymbol(outerThisStack.head);
|
|
super.visitNewClass(tree);
|
|
}
|
|
|
|
/** If tree refers to a qualified this or super expression
|
|
* for anything but the current class, add the outer this
|
|
* stack as a free variable.
|
|
*/
|
|
public void visitSelect(JCFieldAccess tree) {
|
|
if ((tree.name == names._this || tree.name == names._super) &&
|
|
tree.selected.type.tsym != clazz &&
|
|
outerThisStack.head != null)
|
|
visitSymbol(outerThisStack.head);
|
|
super.visitSelect(tree);
|
|
}
|
|
|
|
/** If tree refers to a superclass constructor call,
|
|
* add all free variables of the superclass.
|
|
*/
|
|
public void visitApply(JCMethodInvocation tree) {
|
|
if (TreeInfo.name(tree.meth) == names._super) {
|
|
Symbol constructor = TreeInfo.symbol(tree.meth);
|
|
ClassSymbol c = (ClassSymbol)constructor.owner;
|
|
if (c.hasOuterInstance() &&
|
|
!tree.meth.hasTag(SELECT) &&
|
|
outerThisStack.head != null)
|
|
visitSymbol(outerThisStack.head);
|
|
}
|
|
super.visitApply(tree);
|
|
}
|
|
}
|
|
|
|
ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
|
|
if (!c.isLocal()) {
|
|
return null;
|
|
}
|
|
Symbol currentOwner = c.owner;
|
|
while ((currentOwner.owner.kind & TYP) != 0 && currentOwner.isLocal()) {
|
|
currentOwner = currentOwner.owner;
|
|
}
|
|
if ((currentOwner.owner.kind & (VAR | MTH)) != 0 && c.isSubClass(currentOwner, types)) {
|
|
return (ClassSymbol)currentOwner;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/** Return the variables accessed from within a local class, which
|
|
* are declared in the local class' owner.
|
|
* (in reverse order of first access).
|
|
*/
|
|
List<VarSymbol> freevars(ClassSymbol c) {
|
|
List<VarSymbol> fvs = freevarCache.get(c);
|
|
if (fvs != null) {
|
|
return fvs;
|
|
}
|
|
if ((c.owner.kind & (VAR | MTH)) != 0) {
|
|
FreeVarCollector collector = new FreeVarCollector(c);
|
|
collector.scan(classDef(c));
|
|
fvs = collector.fvs;
|
|
freevarCache.put(c, fvs);
|
|
return fvs;
|
|
} else {
|
|
ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
|
|
if (owner != null) {
|
|
fvs = freevarCache.get(owner);
|
|
freevarCache.put(c, fvs);
|
|
return fvs;
|
|
} else {
|
|
return List.nil();
|
|
}
|
|
}
|
|
}
|
|
|
|
Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
|
|
|
|
EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
|
|
EnumMapping map = enumSwitchMap.get(enumClass);
|
|
if (map == null)
|
|
enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
|
|
return map;
|
|
}
|
|
|
|
/** This map gives a translation table to be used for enum
|
|
* switches.
|
|
*
|
|
* <p>For each enum that appears as the type of a switch
|
|
* expression, we maintain an EnumMapping to assist in the
|
|
* translation, as exemplified by the following example:
|
|
*
|
|
* <p>we translate
|
|
* <pre>
|
|
* switch(colorExpression) {
|
|
* case red: stmt1;
|
|
* case green: stmt2;
|
|
* }
|
|
* </pre>
|
|
* into
|
|
* <pre>
|
|
* switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
|
|
* case 1: stmt1;
|
|
* case 2: stmt2
|
|
* }
|
|
* </pre>
|
|
* with the auxiliary table initialized as follows:
|
|
* <pre>
|
|
* class Outer$0 {
|
|
* synthetic final int[] $EnumMap$Color = new int[Color.values().length];
|
|
* static {
|
|
* try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
|
|
* try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
|
|
* }
|
|
* }
|
|
* </pre>
|
|
* class EnumMapping provides mapping data and support methods for this translation.
|
|
*/
|
|
class EnumMapping {
|
|
EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
|
|
this.forEnum = forEnum;
|
|
this.values = new LinkedHashMap<VarSymbol,Integer>();
|
|
this.pos = pos;
|
|
Name varName = names
|
|
.fromString(target.syntheticNameChar() +
|
|
"SwitchMap" +
|
|
target.syntheticNameChar() +
|
|
writer.xClassName(forEnum.type).toString()
|
|
.replace('/', '.')
|
|
.replace('.', target.syntheticNameChar()));
|
|
ClassSymbol outerCacheClass = outerCacheClass();
|
|
this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
|
|
varName,
|
|
new ArrayType(syms.intType, syms.arrayClass),
|
|
outerCacheClass);
|
|
enterSynthetic(pos, mapVar, outerCacheClass.members());
|
|
}
|
|
|
|
DiagnosticPosition pos = null;
|
|
|
|
// the next value to use
|
|
int next = 1; // 0 (unused map elements) go to the default label
|
|
|
|
// the enum for which this is a map
|
|
final TypeSymbol forEnum;
|
|
|
|
// the field containing the map
|
|
final VarSymbol mapVar;
|
|
|
|
// the mapped values
|
|
final Map<VarSymbol,Integer> values;
|
|
|
|
JCLiteral forConstant(VarSymbol v) {
|
|
Integer result = values.get(v);
|
|
if (result == null)
|
|
values.put(v, result = next++);
|
|
return make.Literal(result);
|
|
}
|
|
|
|
// generate the field initializer for the map
|
|
void translate() {
|
|
make.at(pos.getStartPosition());
|
|
JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
|
|
|
|
// synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
|
|
MethodSymbol valuesMethod = lookupMethod(pos,
|
|
names.values,
|
|
forEnum.type,
|
|
List.<Type>nil());
|
|
JCExpression size = make // Color.values().length
|
|
.Select(make.App(make.QualIdent(valuesMethod)),
|
|
syms.lengthVar);
|
|
JCExpression mapVarInit = make
|
|
.NewArray(make.Type(syms.intType), List.of(size), null)
|
|
.setType(new ArrayType(syms.intType, syms.arrayClass));
|
|
|
|
// try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
|
|
ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
|
|
Symbol ordinalMethod = lookupMethod(pos,
|
|
names.ordinal,
|
|
forEnum.type,
|
|
List.<Type>nil());
|
|
List<JCCatch> catcher = List.<JCCatch>nil()
|
|
.prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
|
|
syms.noSuchFieldErrorType,
|
|
syms.noSymbol),
|
|
null),
|
|
make.Block(0, List.<JCStatement>nil())));
|
|
for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
|
|
VarSymbol enumerator = e.getKey();
|
|
Integer mappedValue = e.getValue();
|
|
JCExpression assign = make
|
|
.Assign(make.Indexed(mapVar,
|
|
make.App(make.Select(make.QualIdent(enumerator),
|
|
ordinalMethod))),
|
|
make.Literal(mappedValue))
|
|
.setType(syms.intType);
|
|
JCStatement exec = make.Exec(assign);
|
|
JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
|
|
stmts.append(_try);
|
|
}
|
|
|
|
owner.defs = owner.defs
|
|
.prepend(make.Block(STATIC, stmts.toList()))
|
|
.prepend(make.VarDef(mapVar, mapVarInit));
|
|
}
|
|
}
|
|
|
|
|
|
/**************************************************************************
|
|
* Tree building blocks
|
|
*************************************************************************/
|
|
|
|
/** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
|
|
* pos as make_pos, for use in diagnostics.
|
|
**/
|
|
TreeMaker make_at(DiagnosticPosition pos) {
|
|
make_pos = pos;
|
|
return make.at(pos);
|
|
}
|
|
|
|
/** Make an attributed tree representing a literal. This will be an
|
|
* Ident node in the case of boolean literals, a Literal node in all
|
|
* other cases.
|
|
* @param type The literal's type.
|
|
* @param value The literal's value.
|
|
*/
|
|
JCExpression makeLit(Type type, Object value) {
|
|
return make.Literal(type.getTag(), value).setType(type.constType(value));
|
|
}
|
|
|
|
/** Make an attributed tree representing null.
|
|
*/
|
|
JCExpression makeNull() {
|
|
return makeLit(syms.botType, null);
|
|
}
|
|
|
|
/** Make an attributed class instance creation expression.
|
|
* @param ctype The class type.
|
|
* @param args The constructor arguments.
|
|
*/
|
|
JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
|
|
JCNewClass tree = make.NewClass(null,
|
|
null, make.QualIdent(ctype.tsym), args, null);
|
|
tree.constructor = rs.resolveConstructor(
|
|
make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
|
|
tree.type = ctype;
|
|
return tree;
|
|
}
|
|
|
|
/** Make an attributed unary expression.
|
|
* @param optag The operators tree tag.
|
|
* @param arg The operator's argument.
|
|
*/
|
|
JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
|
|
JCUnary tree = make.Unary(optag, arg);
|
|
tree.operator = rs.resolveUnaryOperator(
|
|
make_pos, optag, attrEnv, arg.type);
|
|
tree.type = tree.operator.type.getReturnType();
|
|
return tree;
|
|
}
|
|
|
|
/** Make an attributed binary expression.
|
|
* @param optag The operators tree tag.
|
|
* @param lhs The operator's left argument.
|
|
* @param rhs The operator's right argument.
|
|
*/
|
|
JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
|
|
JCBinary tree = make.Binary(optag, lhs, rhs);
|
|
tree.operator = rs.resolveBinaryOperator(
|
|
make_pos, optag, attrEnv, lhs.type, rhs.type);
|
|
tree.type = tree.operator.type.getReturnType();
|
|
return tree;
|
|
}
|
|
|
|
/** Make an attributed assignop expression.
|
|
* @param optag The operators tree tag.
|
|
* @param lhs The operator's left argument.
|
|
* @param rhs The operator's right argument.
|
|
*/
|
|
JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
|
|
JCAssignOp tree = make.Assignop(optag, lhs, rhs);
|
|
tree.operator = rs.resolveBinaryOperator(
|
|
make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
|
|
tree.type = lhs.type;
|
|
return tree;
|
|
}
|
|
|
|
/** Convert tree into string object, unless it has already a
|
|
* reference type..
|
|
*/
|
|
JCExpression makeString(JCExpression tree) {
|
|
if (!tree.type.isPrimitiveOrVoid()) {
|
|
return tree;
|
|
} else {
|
|
Symbol valueOfSym = lookupMethod(tree.pos(),
|
|
names.valueOf,
|
|
syms.stringType,
|
|
List.of(tree.type));
|
|
return make.App(make.QualIdent(valueOfSym), List.of(tree));
|
|
}
|
|
}
|
|
|
|
/** Create an empty anonymous class definition and enter and complete
|
|
* its symbol. Return the class definition's symbol.
|
|
* and create
|
|
* @param flags The class symbol's flags
|
|
* @param owner The class symbol's owner
|
|
*/
|
|
JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
|
|
return makeEmptyClass(flags, owner, null, true);
|
|
}
|
|
|
|
JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
|
|
boolean addToDefs) {
|
|
// Create class symbol.
|
|
ClassSymbol c = reader.defineClass(names.empty, owner);
|
|
if (flatname != null) {
|
|
c.flatname = flatname;
|
|
} else {
|
|
c.flatname = chk.localClassName(c);
|
|
}
|
|
c.sourcefile = owner.sourcefile;
|
|
c.completer = null;
|
|
c.members_field = new Scope(c);
|
|
c.flags_field = flags;
|
|
ClassType ctype = (ClassType) c.type;
|
|
ctype.supertype_field = syms.objectType;
|
|
ctype.interfaces_field = List.nil();
|
|
|
|
JCClassDecl odef = classDef(owner);
|
|
|
|
// Enter class symbol in owner scope and compiled table.
|
|
enterSynthetic(odef.pos(), c, owner.members());
|
|
chk.compiled.put(c.flatname, c);
|
|
|
|
// Create class definition tree.
|
|
JCClassDecl cdef = make.ClassDef(
|
|
make.Modifiers(flags), names.empty,
|
|
List.<JCTypeParameter>nil(),
|
|
null, List.<JCExpression>nil(), List.<JCTree>nil());
|
|
cdef.sym = c;
|
|
cdef.type = c.type;
|
|
|
|
// Append class definition tree to owner's definitions.
|
|
if (addToDefs) odef.defs = odef.defs.prepend(cdef);
|
|
return cdef;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Symbol manipulation utilities
|
|
*************************************************************************/
|
|
|
|
/** Enter a synthetic symbol in a given scope, but complain if there was already one there.
|
|
* @param pos Position for error reporting.
|
|
* @param sym The symbol.
|
|
* @param s The scope.
|
|
*/
|
|
private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
|
|
s.enter(sym);
|
|
}
|
|
|
|
/** Create a fresh synthetic name within a given scope - the unique name is
|
|
* obtained by appending '$' chars at the end of the name until no match
|
|
* is found.
|
|
*
|
|
* @param name base name
|
|
* @param s scope in which the name has to be unique
|
|
* @return fresh synthetic name
|
|
*/
|
|
private Name makeSyntheticName(Name name, Scope s) {
|
|
do {
|
|
name = name.append(
|
|
target.syntheticNameChar(),
|
|
names.empty);
|
|
} while (lookupSynthetic(name, s) != null);
|
|
return name;
|
|
}
|
|
|
|
/** Check whether synthetic symbols generated during lowering conflict
|
|
* with user-defined symbols.
|
|
*
|
|
* @param translatedTrees lowered class trees
|
|
*/
|
|
void checkConflicts(List<JCTree> translatedTrees) {
|
|
for (JCTree t : translatedTrees) {
|
|
t.accept(conflictsChecker);
|
|
}
|
|
}
|
|
|
|
JCTree.Visitor conflictsChecker = new TreeScanner() {
|
|
|
|
TypeSymbol currentClass;
|
|
|
|
@Override
|
|
public void visitMethodDef(JCMethodDecl that) {
|
|
chk.checkConflicts(that.pos(), that.sym, currentClass);
|
|
super.visitMethodDef(that);
|
|
}
|
|
|
|
@Override
|
|
public void visitVarDef(JCVariableDecl that) {
|
|
if (that.sym.owner.kind == TYP) {
|
|
chk.checkConflicts(that.pos(), that.sym, currentClass);
|
|
}
|
|
super.visitVarDef(that);
|
|
}
|
|
|
|
@Override
|
|
public void visitClassDef(JCClassDecl that) {
|
|
TypeSymbol prevCurrentClass = currentClass;
|
|
currentClass = that.sym;
|
|
try {
|
|
super.visitClassDef(that);
|
|
}
|
|
finally {
|
|
currentClass = prevCurrentClass;
|
|
}
|
|
}
|
|
};
|
|
|
|
/** Look up a synthetic name in a given scope.
|
|
* @param s The scope.
|
|
* @param name The name.
|
|
*/
|
|
private Symbol lookupSynthetic(Name name, Scope s) {
|
|
Symbol sym = s.lookup(name).sym;
|
|
return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
|
|
}
|
|
|
|
/** Look up a method in a given scope.
|
|
*/
|
|
private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
|
|
return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
|
|
}
|
|
|
|
/** Look up a constructor.
|
|
*/
|
|
private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
|
|
return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
|
|
}
|
|
|
|
/** Look up a field.
|
|
*/
|
|
private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
|
|
return rs.resolveInternalField(pos, attrEnv, qual, name);
|
|
}
|
|
|
|
/** Anon inner classes are used as access constructor tags.
|
|
* accessConstructorTag will use an existing anon class if one is available,
|
|
* and synthethise a class (with makeEmptyClass) if one is not available.
|
|
* However, there is a small possibility that an existing class will not
|
|
* be generated as expected if it is inside a conditional with a constant
|
|
* expression. If that is found to be the case, create an empty class tree here.
|
|
*/
|
|
private void checkAccessConstructorTags() {
|
|
for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
|
|
ClassSymbol c = l.head;
|
|
if (isTranslatedClassAvailable(c))
|
|
continue;
|
|
// Create class definition tree.
|
|
JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
|
|
c.outermostClass(), c.flatname, false);
|
|
swapAccessConstructorTag(c, cdec.sym);
|
|
translated.append(cdec);
|
|
}
|
|
}
|
|
// where
|
|
private boolean isTranslatedClassAvailable(ClassSymbol c) {
|
|
for (JCTree tree: translated) {
|
|
if (tree.hasTag(CLASSDEF)
|
|
&& ((JCClassDecl) tree).sym == c) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
|
|
for (MethodSymbol methodSymbol : accessConstrs.values()) {
|
|
Assert.check(methodSymbol.type.hasTag(METHOD));
|
|
MethodType oldMethodType =
|
|
(MethodType)methodSymbol.type;
|
|
if (oldMethodType.argtypes.head.tsym == oldCTag)
|
|
methodSymbol.type =
|
|
types.createMethodTypeWithParameters(oldMethodType,
|
|
oldMethodType.getParameterTypes().tail
|
|
.prepend(newCTag.erasure(types)));
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Access methods
|
|
*************************************************************************/
|
|
|
|
/** Access codes for dereferencing, assignment,
|
|
* and pre/post increment/decrement.
|
|
* Access codes for assignment operations are determined by method accessCode
|
|
* below.
|
|
*
|
|
* All access codes for accesses to the current class are even.
|
|
* If a member of the superclass should be accessed instead (because
|
|
* access was via a qualified super), add one to the corresponding code
|
|
* for the current class, making the number odd.
|
|
* This numbering scheme is used by the backend to decide whether
|
|
* to issue an invokevirtual or invokespecial call.
|
|
*
|
|
* @see Gen#visitSelect(JCFieldAccess tree)
|
|
*/
|
|
private static final int
|
|
DEREFcode = 0,
|
|
ASSIGNcode = 2,
|
|
PREINCcode = 4,
|
|
PREDECcode = 6,
|
|
POSTINCcode = 8,
|
|
POSTDECcode = 10,
|
|
FIRSTASGOPcode = 12;
|
|
|
|
/** Number of access codes
|
|
*/
|
|
private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
|
|
|
|
/** A mapping from symbols to their access numbers.
|
|
*/
|
|
private Map<Symbol,Integer> accessNums;
|
|
|
|
/** A mapping from symbols to an array of access symbols, indexed by
|
|
* access code.
|
|
*/
|
|
private Map<Symbol,MethodSymbol[]> accessSyms;
|
|
|
|
/** A mapping from (constructor) symbols to access constructor symbols.
|
|
*/
|
|
private Map<Symbol,MethodSymbol> accessConstrs;
|
|
|
|
/** A list of all class symbols used for access constructor tags.
|
|
*/
|
|
private List<ClassSymbol> accessConstrTags;
|
|
|
|
/** A queue for all accessed symbols.
|
|
*/
|
|
private ListBuffer<Symbol> accessed;
|
|
|
|
/** Map bytecode of binary operation to access code of corresponding
|
|
* assignment operation. This is always an even number.
|
|
*/
|
|
private static int accessCode(int bytecode) {
|
|
if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
|
|
return (bytecode - iadd) * 2 + FIRSTASGOPcode;
|
|
else if (bytecode == ByteCodes.string_add)
|
|
return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
|
|
else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
|
|
return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/** return access code for identifier,
|
|
* @param tree The tree representing the identifier use.
|
|
* @param enclOp The closest enclosing operation node of tree,
|
|
* null if tree is not a subtree of an operation.
|
|
*/
|
|
private static int accessCode(JCTree tree, JCTree enclOp) {
|
|
if (enclOp == null)
|
|
return DEREFcode;
|
|
else if (enclOp.hasTag(ASSIGN) &&
|
|
tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
|
|
return ASSIGNcode;
|
|
else if (enclOp.getTag().isIncOrDecUnaryOp() &&
|
|
tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
|
|
return mapTagToUnaryOpCode(enclOp.getTag());
|
|
else if (enclOp.getTag().isAssignop() &&
|
|
tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
|
|
return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
|
|
else
|
|
return DEREFcode;
|
|
}
|
|
|
|
/** Return binary operator that corresponds to given access code.
|
|
*/
|
|
private OperatorSymbol binaryAccessOperator(int acode) {
|
|
for (Scope.Entry e = syms.predefClass.members().elems;
|
|
e != null;
|
|
e = e.sibling) {
|
|
if (e.sym instanceof OperatorSymbol) {
|
|
OperatorSymbol op = (OperatorSymbol)e.sym;
|
|
if (accessCode(op.opcode) == acode) return op;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/** Return tree tag for assignment operation corresponding
|
|
* to given binary operator.
|
|
*/
|
|
private static JCTree.Tag treeTag(OperatorSymbol operator) {
|
|
switch (operator.opcode) {
|
|
case ByteCodes.ior: case ByteCodes.lor:
|
|
return BITOR_ASG;
|
|
case ByteCodes.ixor: case ByteCodes.lxor:
|
|
return BITXOR_ASG;
|
|
case ByteCodes.iand: case ByteCodes.land:
|
|
return BITAND_ASG;
|
|
case ByteCodes.ishl: case ByteCodes.lshl:
|
|
case ByteCodes.ishll: case ByteCodes.lshll:
|
|
return SL_ASG;
|
|
case ByteCodes.ishr: case ByteCodes.lshr:
|
|
case ByteCodes.ishrl: case ByteCodes.lshrl:
|
|
return SR_ASG;
|
|
case ByteCodes.iushr: case ByteCodes.lushr:
|
|
case ByteCodes.iushrl: case ByteCodes.lushrl:
|
|
return USR_ASG;
|
|
case ByteCodes.iadd: case ByteCodes.ladd:
|
|
case ByteCodes.fadd: case ByteCodes.dadd:
|
|
case ByteCodes.string_add:
|
|
return PLUS_ASG;
|
|
case ByteCodes.isub: case ByteCodes.lsub:
|
|
case ByteCodes.fsub: case ByteCodes.dsub:
|
|
return MINUS_ASG;
|
|
case ByteCodes.imul: case ByteCodes.lmul:
|
|
case ByteCodes.fmul: case ByteCodes.dmul:
|
|
return MUL_ASG;
|
|
case ByteCodes.idiv: case ByteCodes.ldiv:
|
|
case ByteCodes.fdiv: case ByteCodes.ddiv:
|
|
return DIV_ASG;
|
|
case ByteCodes.imod: case ByteCodes.lmod:
|
|
case ByteCodes.fmod: case ByteCodes.dmod:
|
|
return MOD_ASG;
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
|
|
/** The name of the access method with number `anum' and access code `acode'.
|
|
*/
|
|
Name accessName(int anum, int acode) {
|
|
return names.fromString(
|
|
"access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
|
|
}
|
|
|
|
/** Return access symbol for a private or protected symbol from an inner class.
|
|
* @param sym The accessed private symbol.
|
|
* @param tree The accessing tree.
|
|
* @param enclOp The closest enclosing operation node of tree,
|
|
* null if tree is not a subtree of an operation.
|
|
* @param protAccess Is access to a protected symbol in another
|
|
* package?
|
|
* @param refSuper Is access via a (qualified) C.super?
|
|
*/
|
|
MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
|
|
boolean protAccess, boolean refSuper) {
|
|
ClassSymbol accOwner = refSuper && protAccess
|
|
// For access via qualified super (T.super.x), place the
|
|
// access symbol on T.
|
|
? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
|
|
// Otherwise pretend that the owner of an accessed
|
|
// protected symbol is the enclosing class of the current
|
|
// class which is a subclass of the symbol's owner.
|
|
: accessClass(sym, protAccess, tree);
|
|
|
|
Symbol vsym = sym;
|
|
if (sym.owner != accOwner) {
|
|
vsym = sym.clone(accOwner);
|
|
actualSymbols.put(vsym, sym);
|
|
}
|
|
|
|
Integer anum // The access number of the access method.
|
|
= accessNums.get(vsym);
|
|
if (anum == null) {
|
|
anum = accessed.length();
|
|
accessNums.put(vsym, anum);
|
|
accessSyms.put(vsym, new MethodSymbol[NCODES]);
|
|
accessed.append(vsym);
|
|
// System.out.println("accessing " + vsym + " in " + vsym.location());
|
|
}
|
|
|
|
int acode; // The access code of the access method.
|
|
List<Type> argtypes; // The argument types of the access method.
|
|
Type restype; // The result type of the access method.
|
|
List<Type> thrown; // The thrown exceptions of the access method.
|
|
switch (vsym.kind) {
|
|
case VAR:
|
|
acode = accessCode(tree, enclOp);
|
|
if (acode >= FIRSTASGOPcode) {
|
|
OperatorSymbol operator = binaryAccessOperator(acode);
|
|
if (operator.opcode == string_add)
|
|
argtypes = List.of(syms.objectType);
|
|
else
|
|
argtypes = operator.type.getParameterTypes().tail;
|
|
} else if (acode == ASSIGNcode)
|
|
argtypes = List.of(vsym.erasure(types));
|
|
else
|
|
argtypes = List.nil();
|
|
restype = vsym.erasure(types);
|
|
thrown = List.nil();
|
|
break;
|
|
case MTH:
|
|
acode = DEREFcode;
|
|
argtypes = vsym.erasure(types).getParameterTypes();
|
|
restype = vsym.erasure(types).getReturnType();
|
|
thrown = vsym.type.getThrownTypes();
|
|
break;
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
|
|
// For references via qualified super, increment acode by one,
|
|
// making it odd.
|
|
if (protAccess && refSuper) acode++;
|
|
|
|
// Instance access methods get instance as first parameter.
|
|
// For protected symbols this needs to be the instance as a member
|
|
// of the type containing the accessed symbol, not the class
|
|
// containing the access method.
|
|
if ((vsym.flags() & STATIC) == 0) {
|
|
argtypes = argtypes.prepend(vsym.owner.erasure(types));
|
|
}
|
|
MethodSymbol[] accessors = accessSyms.get(vsym);
|
|
MethodSymbol accessor = accessors[acode];
|
|
if (accessor == null) {
|
|
accessor = new MethodSymbol(
|
|
STATIC | SYNTHETIC,
|
|
accessName(anum.intValue(), acode),
|
|
new MethodType(argtypes, restype, thrown, syms.methodClass),
|
|
accOwner);
|
|
enterSynthetic(tree.pos(), accessor, accOwner.members());
|
|
accessors[acode] = accessor;
|
|
}
|
|
return accessor;
|
|
}
|
|
|
|
/** The qualifier to be used for accessing a symbol in an outer class.
|
|
* This is either C.sym or C.this.sym, depending on whether or not
|
|
* sym is static.
|
|
* @param sym The accessed symbol.
|
|
*/
|
|
JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
|
|
return (sym.flags() & STATIC) != 0
|
|
? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
|
|
: makeOwnerThis(pos, sym, true);
|
|
}
|
|
|
|
/** Do we need an access method to reference private symbol?
|
|
*/
|
|
boolean needsPrivateAccess(Symbol sym) {
|
|
if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
|
|
return false;
|
|
} else if (sym.name == names.init && sym.owner.isLocal()) {
|
|
// private constructor in local class: relax protection
|
|
sym.flags_field &= ~PRIVATE;
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/** Do we need an access method to reference symbol in other package?
|
|
*/
|
|
boolean needsProtectedAccess(Symbol sym, JCTree tree) {
|
|
if ((sym.flags() & PROTECTED) == 0 ||
|
|
sym.owner.owner == currentClass.owner || // fast special case
|
|
sym.packge() == currentClass.packge())
|
|
return false;
|
|
if (!currentClass.isSubClass(sym.owner, types))
|
|
return true;
|
|
if ((sym.flags() & STATIC) != 0 ||
|
|
!tree.hasTag(SELECT) ||
|
|
TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
|
|
return false;
|
|
return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
|
|
}
|
|
|
|
/** The class in which an access method for given symbol goes.
|
|
* @param sym The access symbol
|
|
* @param protAccess Is access to a protected symbol in another
|
|
* package?
|
|
*/
|
|
ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
|
|
if (protAccess) {
|
|
Symbol qualifier = null;
|
|
ClassSymbol c = currentClass;
|
|
if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
|
|
qualifier = ((JCFieldAccess) tree).selected.type.tsym;
|
|
while (!qualifier.isSubClass(c, types)) {
|
|
c = c.owner.enclClass();
|
|
}
|
|
return c;
|
|
} else {
|
|
while (!c.isSubClass(sym.owner, types)) {
|
|
c = c.owner.enclClass();
|
|
}
|
|
}
|
|
return c;
|
|
} else {
|
|
// the symbol is private
|
|
return sym.owner.enclClass();
|
|
}
|
|
}
|
|
|
|
private void addPrunedInfo(JCTree tree) {
|
|
List<JCTree> infoList = prunedTree.get(currentClass);
|
|
infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
|
|
prunedTree.put(currentClass, infoList);
|
|
}
|
|
|
|
/** Ensure that identifier is accessible, return tree accessing the identifier.
|
|
* @param sym The accessed symbol.
|
|
* @param tree The tree referring to the symbol.
|
|
* @param enclOp The closest enclosing operation node of tree,
|
|
* null if tree is not a subtree of an operation.
|
|
* @param refSuper Is access via a (qualified) C.super?
|
|
*/
|
|
JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
|
|
// Access a free variable via its proxy, or its proxy's proxy
|
|
while (sym.kind == VAR && sym.owner.kind == MTH &&
|
|
sym.owner.enclClass() != currentClass) {
|
|
// A constant is replaced by its constant value.
|
|
Object cv = ((VarSymbol)sym).getConstValue();
|
|
if (cv != null) {
|
|
make.at(tree.pos);
|
|
return makeLit(sym.type, cv);
|
|
}
|
|
// Otherwise replace the variable by its proxy.
|
|
sym = proxies.lookup(proxyName(sym.name)).sym;
|
|
Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
|
|
tree = make.at(tree.pos).Ident(sym);
|
|
}
|
|
JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
|
|
switch (sym.kind) {
|
|
case TYP:
|
|
if (sym.owner.kind != PCK) {
|
|
// Convert type idents to
|
|
// <flat name> or <package name> . <flat name>
|
|
Name flatname = Convert.shortName(sym.flatName());
|
|
while (base != null &&
|
|
TreeInfo.symbol(base) != null &&
|
|
TreeInfo.symbol(base).kind != PCK) {
|
|
base = (base.hasTag(SELECT))
|
|
? ((JCFieldAccess) base).selected
|
|
: null;
|
|
}
|
|
if (tree.hasTag(IDENT)) {
|
|
((JCIdent) tree).name = flatname;
|
|
} else if (base == null) {
|
|
tree = make.at(tree.pos).Ident(sym);
|
|
((JCIdent) tree).name = flatname;
|
|
} else {
|
|
((JCFieldAccess) tree).selected = base;
|
|
((JCFieldAccess) tree).name = flatname;
|
|
}
|
|
}
|
|
break;
|
|
case MTH: case VAR:
|
|
if (sym.owner.kind == TYP) {
|
|
|
|
// Access methods are required for
|
|
// - private members,
|
|
// - protected members in a superclass of an
|
|
// enclosing class contained in another package.
|
|
// - all non-private members accessed via a qualified super.
|
|
boolean protAccess = refSuper && !needsPrivateAccess(sym)
|
|
|| needsProtectedAccess(sym, tree);
|
|
boolean accReq = protAccess || needsPrivateAccess(sym);
|
|
|
|
// A base has to be supplied for
|
|
// - simple identifiers accessing variables in outer classes.
|
|
boolean baseReq =
|
|
base == null &&
|
|
sym.owner != syms.predefClass &&
|
|
!sym.isMemberOf(currentClass, types);
|
|
|
|
if (accReq || baseReq) {
|
|
make.at(tree.pos);
|
|
|
|
// Constants are replaced by their constant value.
|
|
if (sym.kind == VAR) {
|
|
Object cv = ((VarSymbol)sym).getConstValue();
|
|
if (cv != null) {
|
|
addPrunedInfo(tree);
|
|
return makeLit(sym.type, cv);
|
|
}
|
|
}
|
|
|
|
// Private variables and methods are replaced by calls
|
|
// to their access methods.
|
|
if (accReq) {
|
|
List<JCExpression> args = List.nil();
|
|
if ((sym.flags() & STATIC) == 0) {
|
|
// Instance access methods get instance
|
|
// as first parameter.
|
|
if (base == null)
|
|
base = makeOwnerThis(tree.pos(), sym, true);
|
|
args = args.prepend(base);
|
|
base = null; // so we don't duplicate code
|
|
}
|
|
Symbol access = accessSymbol(sym, tree,
|
|
enclOp, protAccess,
|
|
refSuper);
|
|
JCExpression receiver = make.Select(
|
|
base != null ? base : make.QualIdent(access.owner),
|
|
access);
|
|
return make.App(receiver, args);
|
|
|
|
// Other accesses to members of outer classes get a
|
|
// qualifier.
|
|
} else if (baseReq) {
|
|
return make.at(tree.pos).Select(
|
|
accessBase(tree.pos(), sym), sym).setType(tree.type);
|
|
}
|
|
}
|
|
} else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
|
|
//sym is a local variable - check the lambda translation map to
|
|
//see if sym has been translated to something else in the current
|
|
//scope (by LambdaToMethod)
|
|
Symbol translatedSym = lambdaTranslationMap.get(sym);
|
|
if (translatedSym != null) {
|
|
tree = make.at(tree.pos).Ident(translatedSym);
|
|
}
|
|
}
|
|
}
|
|
return tree;
|
|
}
|
|
|
|
/** Ensure that identifier is accessible, return tree accessing the identifier.
|
|
* @param tree The identifier tree.
|
|
*/
|
|
JCExpression access(JCExpression tree) {
|
|
Symbol sym = TreeInfo.symbol(tree);
|
|
return sym == null ? tree : access(sym, tree, null, false);
|
|
}
|
|
|
|
/** Return access constructor for a private constructor,
|
|
* or the constructor itself, if no access constructor is needed.
|
|
* @param pos The position to report diagnostics, if any.
|
|
* @param constr The private constructor.
|
|
*/
|
|
Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
|
|
if (needsPrivateAccess(constr)) {
|
|
ClassSymbol accOwner = constr.owner.enclClass();
|
|
MethodSymbol aconstr = accessConstrs.get(constr);
|
|
if (aconstr == null) {
|
|
List<Type> argtypes = constr.type.getParameterTypes();
|
|
if ((accOwner.flags_field & ENUM) != 0)
|
|
argtypes = argtypes
|
|
.prepend(syms.intType)
|
|
.prepend(syms.stringType);
|
|
aconstr = new MethodSymbol(
|
|
SYNTHETIC,
|
|
names.init,
|
|
new MethodType(
|
|
argtypes.append(
|
|
accessConstructorTag().erasure(types)),
|
|
constr.type.getReturnType(),
|
|
constr.type.getThrownTypes(),
|
|
syms.methodClass),
|
|
accOwner);
|
|
enterSynthetic(pos, aconstr, accOwner.members());
|
|
accessConstrs.put(constr, aconstr);
|
|
accessed.append(constr);
|
|
}
|
|
return aconstr;
|
|
} else {
|
|
return constr;
|
|
}
|
|
}
|
|
|
|
/** Return an anonymous class nested in this toplevel class.
|
|
*/
|
|
ClassSymbol accessConstructorTag() {
|
|
ClassSymbol topClass = currentClass.outermostClass();
|
|
Name flatname = names.fromString("" + topClass.getQualifiedName() +
|
|
target.syntheticNameChar() +
|
|
"1");
|
|
ClassSymbol ctag = chk.compiled.get(flatname);
|
|
if (ctag == null)
|
|
ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
|
|
// keep a record of all tags, to verify that all are generated as required
|
|
accessConstrTags = accessConstrTags.prepend(ctag);
|
|
return ctag;
|
|
}
|
|
|
|
/** Add all required access methods for a private symbol to enclosing class.
|
|
* @param sym The symbol.
|
|
*/
|
|
void makeAccessible(Symbol sym) {
|
|
JCClassDecl cdef = classDef(sym.owner.enclClass());
|
|
if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
|
|
if (sym.name == names.init) {
|
|
cdef.defs = cdef.defs.prepend(
|
|
accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
|
|
} else {
|
|
MethodSymbol[] accessors = accessSyms.get(sym);
|
|
for (int i = 0; i < NCODES; i++) {
|
|
if (accessors[i] != null)
|
|
cdef.defs = cdef.defs.prepend(
|
|
accessDef(cdef.pos, sym, accessors[i], i));
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Maps unary operator integer codes to JCTree.Tag objects
|
|
* @param unaryOpCode the unary operator code
|
|
*/
|
|
private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
|
|
switch (unaryOpCode){
|
|
case PREINCcode:
|
|
return PREINC;
|
|
case PREDECcode:
|
|
return PREDEC;
|
|
case POSTINCcode:
|
|
return POSTINC;
|
|
case POSTDECcode:
|
|
return POSTDEC;
|
|
default:
|
|
return NO_TAG;
|
|
}
|
|
}
|
|
|
|
/** Maps JCTree.Tag objects to unary operator integer codes
|
|
* @param tag the JCTree.Tag
|
|
*/
|
|
private static int mapTagToUnaryOpCode(Tag tag){
|
|
switch (tag){
|
|
case PREINC:
|
|
return PREINCcode;
|
|
case PREDEC:
|
|
return PREDECcode;
|
|
case POSTINC:
|
|
return POSTINCcode;
|
|
case POSTDEC:
|
|
return POSTDECcode;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/** Construct definition of an access method.
|
|
* @param pos The source code position of the definition.
|
|
* @param vsym The private or protected symbol.
|
|
* @param accessor The access method for the symbol.
|
|
* @param acode The access code.
|
|
*/
|
|
JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
|
|
// System.err.println("access " + vsym + " with " + accessor);//DEBUG
|
|
currentClass = vsym.owner.enclClass();
|
|
make.at(pos);
|
|
JCMethodDecl md = make.MethodDef(accessor, null);
|
|
|
|
// Find actual symbol
|
|
Symbol sym = actualSymbols.get(vsym);
|
|
if (sym == null) sym = vsym;
|
|
|
|
JCExpression ref; // The tree referencing the private symbol.
|
|
List<JCExpression> args; // Any additional arguments to be passed along.
|
|
if ((sym.flags() & STATIC) != 0) {
|
|
ref = make.Ident(sym);
|
|
args = make.Idents(md.params);
|
|
} else {
|
|
JCExpression site = make.Ident(md.params.head);
|
|
if (acode % 2 != 0) {
|
|
//odd access codes represent qualified super accesses - need to
|
|
//emit reference to the direct superclass, even if the refered
|
|
//member is from an indirect superclass (JLS 13.1)
|
|
site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
|
|
}
|
|
ref = make.Select(site, sym);
|
|
args = make.Idents(md.params.tail);
|
|
}
|
|
JCStatement stat; // The statement accessing the private symbol.
|
|
if (sym.kind == VAR) {
|
|
// Normalize out all odd access codes by taking floor modulo 2:
|
|
int acode1 = acode - (acode & 1);
|
|
|
|
JCExpression expr; // The access method's return value.
|
|
switch (acode1) {
|
|
case DEREFcode:
|
|
expr = ref;
|
|
break;
|
|
case ASSIGNcode:
|
|
expr = make.Assign(ref, args.head);
|
|
break;
|
|
case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
|
|
expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
|
|
break;
|
|
default:
|
|
expr = make.Assignop(
|
|
treeTag(binaryAccessOperator(acode1)), ref, args.head);
|
|
((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
|
|
}
|
|
stat = make.Return(expr.setType(sym.type));
|
|
} else {
|
|
stat = make.Call(make.App(ref, args));
|
|
}
|
|
md.body = make.Block(0, List.of(stat));
|
|
|
|
// Make sure all parameters, result types and thrown exceptions
|
|
// are accessible.
|
|
for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
|
|
l.head.vartype = access(l.head.vartype);
|
|
md.restype = access(md.restype);
|
|
for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
|
|
l.head = access(l.head);
|
|
|
|
return md;
|
|
}
|
|
|
|
/** Construct definition of an access constructor.
|
|
* @param pos The source code position of the definition.
|
|
* @param constr The private constructor.
|
|
* @param accessor The access method for the constructor.
|
|
*/
|
|
JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
|
|
make.at(pos);
|
|
JCMethodDecl md = make.MethodDef(accessor,
|
|
accessor.externalType(types),
|
|
null);
|
|
JCIdent callee = make.Ident(names._this);
|
|
callee.sym = constr;
|
|
callee.type = constr.type;
|
|
md.body =
|
|
make.Block(0, List.<JCStatement>of(
|
|
make.Call(
|
|
make.App(
|
|
callee,
|
|
make.Idents(md.params.reverse().tail.reverse())))));
|
|
return md;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Free variables proxies and this$n
|
|
*************************************************************************/
|
|
|
|
/** A scope containing all free variable proxies for currently translated
|
|
* class, as well as its this$n symbol (if needed).
|
|
* Proxy scopes are nested in the same way classes are.
|
|
* Inside a constructor, proxies and any this$n symbol are duplicated
|
|
* in an additional innermost scope, where they represent the constructor
|
|
* parameters.
|
|
*/
|
|
Scope proxies;
|
|
|
|
/** A scope containing all unnamed resource variables/saved
|
|
* exception variables for translated TWR blocks
|
|
*/
|
|
Scope twrVars;
|
|
|
|
/** A stack containing the this$n field of the currently translated
|
|
* classes (if needed) in innermost first order.
|
|
* Inside a constructor, proxies and any this$n symbol are duplicated
|
|
* in an additional innermost scope, where they represent the constructor
|
|
* parameters.
|
|
*/
|
|
List<VarSymbol> outerThisStack;
|
|
|
|
/** The name of a free variable proxy.
|
|
*/
|
|
Name proxyName(Name name) {
|
|
return names.fromString("val" + target.syntheticNameChar() + name);
|
|
}
|
|
|
|
/** Proxy definitions for all free variables in given list, in reverse order.
|
|
* @param pos The source code position of the definition.
|
|
* @param freevars The free variables.
|
|
* @param owner The class in which the definitions go.
|
|
*/
|
|
List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
|
|
return freevarDefs(pos, freevars, owner, 0);
|
|
}
|
|
|
|
List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
|
|
long additionalFlags) {
|
|
long flags = FINAL | SYNTHETIC | additionalFlags;
|
|
if (owner.kind == TYP &&
|
|
target.usePrivateSyntheticFields())
|
|
flags |= PRIVATE;
|
|
List<JCVariableDecl> defs = List.nil();
|
|
for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
|
|
VarSymbol v = l.head;
|
|
VarSymbol proxy = new VarSymbol(
|
|
flags, proxyName(v.name), v.erasure(types), owner);
|
|
proxies.enter(proxy);
|
|
JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
|
|
vd.vartype = access(vd.vartype);
|
|
defs = defs.prepend(vd);
|
|
}
|
|
return defs;
|
|
}
|
|
|
|
/** The name of a this$n field
|
|
* @param type The class referenced by the this$n field
|
|
*/
|
|
Name outerThisName(Type type, Symbol owner) {
|
|
Type t = type.getEnclosingType();
|
|
int nestingLevel = 0;
|
|
while (t.hasTag(CLASS)) {
|
|
t = t.getEnclosingType();
|
|
nestingLevel++;
|
|
}
|
|
Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
|
|
while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
|
|
result = names.fromString(result.toString() + target.syntheticNameChar());
|
|
return result;
|
|
}
|
|
|
|
private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
|
|
if (owner.kind == TYP &&
|
|
target.usePrivateSyntheticFields())
|
|
flags |= PRIVATE;
|
|
Type target = types.erasure(owner.enclClass().type.getEnclosingType());
|
|
VarSymbol outerThis =
|
|
new VarSymbol(flags, outerThisName(target, owner), target, owner);
|
|
outerThisStack = outerThisStack.prepend(outerThis);
|
|
return outerThis;
|
|
}
|
|
|
|
private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
|
|
JCVariableDecl vd = make.at(pos).VarDef(sym, null);
|
|
vd.vartype = access(vd.vartype);
|
|
return vd;
|
|
}
|
|
|
|
/** Definition for this$n field.
|
|
* @param pos The source code position of the definition.
|
|
* @param owner The method in which the definition goes.
|
|
*/
|
|
JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
|
|
ClassSymbol c = owner.enclClass();
|
|
boolean isMandated =
|
|
// Anonymous constructors
|
|
(owner.isConstructor() && owner.isAnonymous()) ||
|
|
// Constructors of non-private inner member classes
|
|
(owner.isConstructor() && c.isInner() &&
|
|
!c.isPrivate() && !c.isStatic());
|
|
long flags =
|
|
FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
|
|
VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
|
|
owner.extraParams = owner.extraParams.prepend(outerThis);
|
|
return makeOuterThisVarDecl(pos, outerThis);
|
|
}
|
|
|
|
/** Definition for this$n field.
|
|
* @param pos The source code position of the definition.
|
|
* @param owner The class in which the definition goes.
|
|
*/
|
|
JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
|
|
VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
|
|
return makeOuterThisVarDecl(pos, outerThis);
|
|
}
|
|
|
|
/** Return a list of trees that load the free variables in given list,
|
|
* in reverse order.
|
|
* @param pos The source code position to be used for the trees.
|
|
* @param freevars The list of free variables.
|
|
*/
|
|
List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
|
|
List<JCExpression> args = List.nil();
|
|
for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
|
|
args = args.prepend(loadFreevar(pos, l.head));
|
|
return args;
|
|
}
|
|
//where
|
|
JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
|
|
return access(v, make.at(pos).Ident(v), null, false);
|
|
}
|
|
|
|
/** Construct a tree simulating the expression {@code C.this}.
|
|
* @param pos The source code position to be used for the tree.
|
|
* @param c The qualifier class.
|
|
*/
|
|
JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
|
|
if (currentClass == c) {
|
|
// in this case, `this' works fine
|
|
return make.at(pos).This(c.erasure(types));
|
|
} else {
|
|
// need to go via this$n
|
|
return makeOuterThis(pos, c);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optionally replace a try statement with the desugaring of a
|
|
* try-with-resources statement. The canonical desugaring of
|
|
*
|
|
* try ResourceSpecification
|
|
* Block
|
|
*
|
|
* is
|
|
*
|
|
* {
|
|
* final VariableModifiers_minus_final R #resource = Expression;
|
|
* Throwable #primaryException = null;
|
|
*
|
|
* try ResourceSpecificationtail
|
|
* Block
|
|
* catch (Throwable #t) {
|
|
* #primaryException = t;
|
|
* throw #t;
|
|
* } finally {
|
|
* if (#resource != null) {
|
|
* if (#primaryException != null) {
|
|
* try {
|
|
* #resource.close();
|
|
* } catch(Throwable #suppressedException) {
|
|
* #primaryException.addSuppressed(#suppressedException);
|
|
* }
|
|
* } else {
|
|
* #resource.close();
|
|
* }
|
|
* }
|
|
* }
|
|
*
|
|
* @param tree The try statement to inspect.
|
|
* @return A a desugared try-with-resources tree, or the original
|
|
* try block if there are no resources to manage.
|
|
*/
|
|
JCTree makeTwrTry(JCTry tree) {
|
|
make_at(tree.pos());
|
|
twrVars = twrVars.dup();
|
|
JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body,
|
|
tree.finallyCanCompleteNormally, 0);
|
|
if (tree.catchers.isEmpty() && tree.finalizer == null)
|
|
result = translate(twrBlock);
|
|
else
|
|
result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
|
|
twrVars = twrVars.leave();
|
|
return result;
|
|
}
|
|
|
|
private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block,
|
|
boolean finallyCanCompleteNormally, int depth) {
|
|
if (resources.isEmpty())
|
|
return block;
|
|
|
|
// Add resource declaration or expression to block statements
|
|
ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
|
|
JCTree resource = resources.head;
|
|
JCExpression expr = null;
|
|
if (resource instanceof JCVariableDecl) {
|
|
JCVariableDecl var = (JCVariableDecl) resource;
|
|
expr = make.Ident(var.sym).setType(resource.type);
|
|
stats.add(var);
|
|
} else {
|
|
Assert.check(resource instanceof JCExpression);
|
|
VarSymbol syntheticTwrVar =
|
|
new VarSymbol(SYNTHETIC | FINAL,
|
|
makeSyntheticName(names.fromString("twrVar" +
|
|
depth), twrVars),
|
|
(resource.type.hasTag(BOT)) ?
|
|
syms.autoCloseableType : resource.type,
|
|
currentMethodSym);
|
|
twrVars.enter(syntheticTwrVar);
|
|
JCVariableDecl syntheticTwrVarDecl =
|
|
make.VarDef(syntheticTwrVar, (JCExpression)resource);
|
|
expr = (JCExpression)make.Ident(syntheticTwrVar);
|
|
stats.add(syntheticTwrVarDecl);
|
|
}
|
|
|
|
// Add primaryException declaration
|
|
VarSymbol primaryException =
|
|
new VarSymbol(SYNTHETIC,
|
|
makeSyntheticName(names.fromString("primaryException" +
|
|
depth), twrVars),
|
|
syms.throwableType,
|
|
currentMethodSym);
|
|
twrVars.enter(primaryException);
|
|
JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
|
|
stats.add(primaryExceptionTreeDecl);
|
|
|
|
// Create catch clause that saves exception and then rethrows it
|
|
VarSymbol param =
|
|
new VarSymbol(FINAL|SYNTHETIC,
|
|
names.fromString("t" +
|
|
target.syntheticNameChar()),
|
|
syms.throwableType,
|
|
currentMethodSym);
|
|
JCVariableDecl paramTree = make.VarDef(param, null);
|
|
JCStatement assign = make.Assignment(primaryException, make.Ident(param));
|
|
JCStatement rethrowStat = make.Throw(make.Ident(param));
|
|
JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
|
|
JCCatch catchClause = make.Catch(paramTree, catchBlock);
|
|
|
|
int oldPos = make.pos;
|
|
make.at(TreeInfo.endPos(block));
|
|
JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
|
|
make.at(oldPos);
|
|
JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block,
|
|
finallyCanCompleteNormally, depth + 1),
|
|
List.<JCCatch>of(catchClause),
|
|
finallyClause);
|
|
outerTry.finallyCanCompleteNormally = finallyCanCompleteNormally;
|
|
stats.add(outerTry);
|
|
JCBlock newBlock = make.Block(0L, stats.toList());
|
|
return newBlock;
|
|
}
|
|
|
|
private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
|
|
// primaryException.addSuppressed(catchException);
|
|
VarSymbol catchException =
|
|
new VarSymbol(SYNTHETIC, make.paramName(2),
|
|
syms.throwableType,
|
|
currentMethodSym);
|
|
JCStatement addSuppressionStatement =
|
|
make.Exec(makeCall(make.Ident(primaryException),
|
|
names.addSuppressed,
|
|
List.<JCExpression>of(make.Ident(catchException))));
|
|
|
|
// try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
|
|
JCBlock tryBlock =
|
|
make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
|
|
JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
|
|
JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
|
|
List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
|
|
JCTry tryTree = make.Try(tryBlock, catchClauses, null);
|
|
tryTree.finallyCanCompleteNormally = true;
|
|
|
|
// if (primaryException != null) {try...} else resourceClose;
|
|
JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
|
|
tryTree,
|
|
makeResourceCloseInvocation(resource));
|
|
|
|
// if (#resource != null) { if (primaryException ... }
|
|
return make.Block(0L,
|
|
List.<JCStatement>of(make.If(makeNonNullCheck(resource),
|
|
closeIfStatement,
|
|
null)));
|
|
}
|
|
|
|
private JCStatement makeResourceCloseInvocation(JCExpression resource) {
|
|
// convert to AutoCloseable if needed
|
|
if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
|
|
resource = (JCExpression) convert(resource, syms.autoCloseableType);
|
|
}
|
|
|
|
// create resource.close() method invocation
|
|
JCExpression resourceClose = makeCall(resource,
|
|
names.close,
|
|
List.<JCExpression>nil());
|
|
return make.Exec(resourceClose);
|
|
}
|
|
|
|
private JCExpression makeNonNullCheck(JCExpression expression) {
|
|
return makeBinary(NE, expression, makeNull());
|
|
}
|
|
|
|
/** Construct a tree that represents the outer instance
|
|
* {@code C.this}. Never pick the current `this'.
|
|
* @param pos The source code position to be used for the tree.
|
|
* @param c The qualifier class.
|
|
*/
|
|
JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
|
|
List<VarSymbol> ots = outerThisStack;
|
|
if (ots.isEmpty()) {
|
|
log.error(pos, "no.encl.instance.of.type.in.scope", c);
|
|
Assert.error();
|
|
return makeNull();
|
|
}
|
|
VarSymbol ot = ots.head;
|
|
JCExpression tree = access(make.at(pos).Ident(ot));
|
|
TypeSymbol otc = ot.type.tsym;
|
|
while (otc != c) {
|
|
do {
|
|
ots = ots.tail;
|
|
if (ots.isEmpty()) {
|
|
log.error(pos,
|
|
"no.encl.instance.of.type.in.scope",
|
|
c);
|
|
Assert.error(); // should have been caught in Attr
|
|
return tree;
|
|
}
|
|
ot = ots.head;
|
|
} while (ot.owner != otc);
|
|
if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
|
|
chk.earlyRefError(pos, c);
|
|
Assert.error(); // should have been caught in Attr
|
|
return makeNull();
|
|
}
|
|
tree = access(make.at(pos).Select(tree, ot));
|
|
otc = ot.type.tsym;
|
|
}
|
|
return tree;
|
|
}
|
|
|
|
/** Construct a tree that represents the closest outer instance
|
|
* {@code C.this} such that the given symbol is a member of C.
|
|
* @param pos The source code position to be used for the tree.
|
|
* @param sym The accessed symbol.
|
|
* @param preciseMatch should we accept a type that is a subtype of
|
|
* sym's owner, even if it doesn't contain sym
|
|
* due to hiding, overriding, or non-inheritance
|
|
* due to protection?
|
|
*/
|
|
JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
|
|
Symbol c = sym.owner;
|
|
if (preciseMatch ? sym.isMemberOf(currentClass, types)
|
|
: currentClass.isSubClass(sym.owner, types)) {
|
|
// in this case, `this' works fine
|
|
return make.at(pos).This(c.erasure(types));
|
|
} else {
|
|
// need to go via this$n
|
|
return makeOwnerThisN(pos, sym, preciseMatch);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Similar to makeOwnerThis but will never pick "this".
|
|
*/
|
|
JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
|
|
Symbol c = sym.owner;
|
|
List<VarSymbol> ots = outerThisStack;
|
|
if (ots.isEmpty()) {
|
|
log.error(pos, "no.encl.instance.of.type.in.scope", c);
|
|
Assert.error();
|
|
return makeNull();
|
|
}
|
|
VarSymbol ot = ots.head;
|
|
JCExpression tree = access(make.at(pos).Ident(ot));
|
|
TypeSymbol otc = ot.type.tsym;
|
|
while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
|
|
do {
|
|
ots = ots.tail;
|
|
if (ots.isEmpty()) {
|
|
log.error(pos,
|
|
"no.encl.instance.of.type.in.scope",
|
|
c);
|
|
Assert.error();
|
|
return tree;
|
|
}
|
|
ot = ots.head;
|
|
} while (ot.owner != otc);
|
|
tree = access(make.at(pos).Select(tree, ot));
|
|
otc = ot.type.tsym;
|
|
}
|
|
return tree;
|
|
}
|
|
|
|
/** Return tree simulating the assignment {@code this.name = name}, where
|
|
* name is the name of a free variable.
|
|
*/
|
|
JCStatement initField(int pos, Name name) {
|
|
Scope.Entry e = proxies.lookup(name);
|
|
Symbol rhs = e.sym;
|
|
Assert.check(rhs.owner.kind == MTH);
|
|
Symbol lhs = e.next().sym;
|
|
Assert.check(rhs.owner.owner == lhs.owner);
|
|
make.at(pos);
|
|
return
|
|
make.Exec(
|
|
make.Assign(
|
|
make.Select(make.This(lhs.owner.erasure(types)), lhs),
|
|
make.Ident(rhs)).setType(lhs.erasure(types)));
|
|
}
|
|
|
|
/** Return tree simulating the assignment {@code this.this$n = this$n}.
|
|
*/
|
|
JCStatement initOuterThis(int pos) {
|
|
VarSymbol rhs = outerThisStack.head;
|
|
Assert.check(rhs.owner.kind == MTH);
|
|
VarSymbol lhs = outerThisStack.tail.head;
|
|
Assert.check(rhs.owner.owner == lhs.owner);
|
|
make.at(pos);
|
|
return
|
|
make.Exec(
|
|
make.Assign(
|
|
make.Select(make.This(lhs.owner.erasure(types)), lhs),
|
|
make.Ident(rhs)).setType(lhs.erasure(types)));
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Code for .class
|
|
*************************************************************************/
|
|
|
|
/** Return the symbol of a class to contain a cache of
|
|
* compiler-generated statics such as class$ and the
|
|
* $assertionsDisabled flag. We create an anonymous nested class
|
|
* (unless one already exists) and return its symbol. However,
|
|
* for backward compatibility in 1.4 and earlier we use the
|
|
* top-level class itself.
|
|
*/
|
|
private ClassSymbol outerCacheClass() {
|
|
ClassSymbol clazz = outermostClassDef.sym;
|
|
if ((clazz.flags() & INTERFACE) == 0 &&
|
|
!target.useInnerCacheClass()) return clazz;
|
|
Scope s = clazz.members();
|
|
for (Scope.Entry e = s.elems; e != null; e = e.sibling)
|
|
if (e.sym.kind == TYP &&
|
|
e.sym.name == names.empty &&
|
|
(e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
|
|
return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
|
|
}
|
|
|
|
/** Return symbol for "class$" method. If there is no method definition
|
|
* for class$, construct one as follows:
|
|
*
|
|
* class class$(String x0) {
|
|
* try {
|
|
* return Class.forName(x0);
|
|
* } catch (ClassNotFoundException x1) {
|
|
* throw new NoClassDefFoundError(x1.getMessage());
|
|
* }
|
|
* }
|
|
*/
|
|
private MethodSymbol classDollarSym(DiagnosticPosition pos) {
|
|
ClassSymbol outerCacheClass = outerCacheClass();
|
|
MethodSymbol classDollarSym =
|
|
(MethodSymbol)lookupSynthetic(classDollar,
|
|
outerCacheClass.members());
|
|
if (classDollarSym == null) {
|
|
classDollarSym = new MethodSymbol(
|
|
STATIC | SYNTHETIC,
|
|
classDollar,
|
|
new MethodType(
|
|
List.of(syms.stringType),
|
|
types.erasure(syms.classType),
|
|
List.<Type>nil(),
|
|
syms.methodClass),
|
|
outerCacheClass);
|
|
enterSynthetic(pos, classDollarSym, outerCacheClass.members());
|
|
|
|
JCMethodDecl md = make.MethodDef(classDollarSym, null);
|
|
try {
|
|
md.body = classDollarSymBody(pos, md);
|
|
} catch (CompletionFailure ex) {
|
|
md.body = make.Block(0, List.<JCStatement>nil());
|
|
chk.completionError(pos, ex);
|
|
}
|
|
JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
|
|
outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
|
|
}
|
|
return classDollarSym;
|
|
}
|
|
|
|
/** Generate code for class$(String name). */
|
|
JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
|
|
MethodSymbol classDollarSym = md.sym;
|
|
ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
|
|
|
|
JCBlock returnResult;
|
|
|
|
// in 1.4.2 and above, we use
|
|
// Class.forName(String name, boolean init, ClassLoader loader);
|
|
// which requires we cache the current loader in cl$
|
|
if (target.classLiteralsNoInit()) {
|
|
// clsym = "private static ClassLoader cl$"
|
|
VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
|
|
names.fromString("cl" + target.syntheticNameChar()),
|
|
syms.classLoaderType,
|
|
outerCacheClass);
|
|
enterSynthetic(pos, clsym, outerCacheClass.members());
|
|
|
|
// emit "private static ClassLoader cl$;"
|
|
JCVariableDecl cldef = make.VarDef(clsym, null);
|
|
JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
|
|
outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
|
|
|
|
// newcache := "new cache$1[0]"
|
|
JCNewArray newcache = make.
|
|
NewArray(make.Type(outerCacheClass.type),
|
|
List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
|
|
null);
|
|
newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
|
|
syms.arrayClass);
|
|
|
|
// forNameSym := java.lang.Class.forName(
|
|
// String s,boolean init,ClassLoader loader)
|
|
Symbol forNameSym = lookupMethod(make_pos, names.forName,
|
|
types.erasure(syms.classType),
|
|
List.of(syms.stringType,
|
|
syms.booleanType,
|
|
syms.classLoaderType));
|
|
// clvalue := "(cl$ == null) ?
|
|
// $newcache.getClass().getComponentType().getClassLoader() : cl$"
|
|
JCExpression clvalue =
|
|
make.Conditional(
|
|
makeBinary(EQ, make.Ident(clsym), makeNull()),
|
|
make.Assign(
|
|
make.Ident(clsym),
|
|
makeCall(
|
|
makeCall(makeCall(newcache,
|
|
names.getClass,
|
|
List.<JCExpression>nil()),
|
|
names.getComponentType,
|
|
List.<JCExpression>nil()),
|
|
names.getClassLoader,
|
|
List.<JCExpression>nil())).setType(syms.classLoaderType),
|
|
make.Ident(clsym)).setType(syms.classLoaderType);
|
|
|
|
// returnResult := "{ return Class.forName(param1, false, cl$); }"
|
|
List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
|
|
makeLit(syms.booleanType, 0),
|
|
clvalue);
|
|
returnResult = make.
|
|
Block(0, List.<JCStatement>of(make.
|
|
Call(make. // return
|
|
App(make.
|
|
Ident(forNameSym), args))));
|
|
} else {
|
|
// forNameSym := java.lang.Class.forName(String s)
|
|
Symbol forNameSym = lookupMethod(make_pos,
|
|
names.forName,
|
|
types.erasure(syms.classType),
|
|
List.of(syms.stringType));
|
|
// returnResult := "{ return Class.forName(param1); }"
|
|
returnResult = make.
|
|
Block(0, List.of(make.
|
|
Call(make. // return
|
|
App(make.
|
|
QualIdent(forNameSym),
|
|
List.<JCExpression>of(make.
|
|
Ident(md.params.
|
|
head.sym))))));
|
|
}
|
|
|
|
// catchParam := ClassNotFoundException e1
|
|
VarSymbol catchParam =
|
|
new VarSymbol(SYNTHETIC, make.paramName(1),
|
|
syms.classNotFoundExceptionType,
|
|
classDollarSym);
|
|
|
|
JCStatement rethrow;
|
|
if (target.hasInitCause()) {
|
|
// rethrow = "throw new NoClassDefFoundError().initCause(e);
|
|
JCExpression throwExpr =
|
|
makeCall(makeNewClass(syms.noClassDefFoundErrorType,
|
|
List.<JCExpression>nil()),
|
|
names.initCause,
|
|
List.<JCExpression>of(make.Ident(catchParam)));
|
|
rethrow = make.Throw(throwExpr);
|
|
} else {
|
|
// getMessageSym := ClassNotFoundException.getMessage()
|
|
Symbol getMessageSym = lookupMethod(make_pos,
|
|
names.getMessage,
|
|
syms.classNotFoundExceptionType,
|
|
List.<Type>nil());
|
|
// rethrow = "throw new NoClassDefFoundError(e.getMessage());"
|
|
rethrow = make.
|
|
Throw(makeNewClass(syms.noClassDefFoundErrorType,
|
|
List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
|
|
getMessageSym),
|
|
List.<JCExpression>nil()))));
|
|
}
|
|
|
|
// rethrowStmt := "( $rethrow )"
|
|
JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
|
|
|
|
// catchBlock := "catch ($catchParam) $rethrowStmt"
|
|
JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
|
|
rethrowStmt);
|
|
|
|
// tryCatch := "try $returnResult $catchBlock"
|
|
JCStatement tryCatch = make.Try(returnResult,
|
|
List.of(catchBlock), null);
|
|
|
|
return make.Block(0, List.of(tryCatch));
|
|
}
|
|
// where
|
|
/** Create an attributed tree of the form left.name(). */
|
|
private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
|
|
Assert.checkNonNull(left.type);
|
|
Symbol funcsym = lookupMethod(make_pos, name, left.type,
|
|
TreeInfo.types(args));
|
|
return make.App(make.Select(left, funcsym), args);
|
|
}
|
|
|
|
/** The Name Of The variable to cache T.class values.
|
|
* @param sig The signature of type T.
|
|
*/
|
|
private Name cacheName(String sig) {
|
|
StringBuilder buf = new StringBuilder();
|
|
if (sig.startsWith("[")) {
|
|
buf = buf.append("array");
|
|
while (sig.startsWith("[")) {
|
|
buf = buf.append(target.syntheticNameChar());
|
|
sig = sig.substring(1);
|
|
}
|
|
if (sig.startsWith("L")) {
|
|
sig = sig.substring(0, sig.length() - 1);
|
|
}
|
|
} else {
|
|
buf = buf.append("class" + target.syntheticNameChar());
|
|
}
|
|
buf = buf.append(sig.replace('.', target.syntheticNameChar()));
|
|
return names.fromString(buf.toString());
|
|
}
|
|
|
|
/** The variable symbol that caches T.class values.
|
|
* If none exists yet, create a definition.
|
|
* @param sig The signature of type T.
|
|
* @param pos The position to report diagnostics, if any.
|
|
*/
|
|
private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
|
|
ClassSymbol outerCacheClass = outerCacheClass();
|
|
Name cname = cacheName(sig);
|
|
VarSymbol cacheSym =
|
|
(VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
|
|
if (cacheSym == null) {
|
|
cacheSym = new VarSymbol(
|
|
STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
|
|
enterSynthetic(pos, cacheSym, outerCacheClass.members());
|
|
|
|
JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
|
|
JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
|
|
outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
|
|
}
|
|
return cacheSym;
|
|
}
|
|
|
|
/** The tree simulating a T.class expression.
|
|
* @param clazz The tree identifying type T.
|
|
*/
|
|
private JCExpression classOf(JCTree clazz) {
|
|
return classOfType(clazz.type, clazz.pos());
|
|
}
|
|
|
|
private JCExpression classOfType(Type type, DiagnosticPosition pos) {
|
|
switch (type.getTag()) {
|
|
case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
|
|
case DOUBLE: case BOOLEAN: case VOID:
|
|
// replace with <BoxedClass>.TYPE
|
|
ClassSymbol c = types.boxedClass(type);
|
|
Symbol typeSym =
|
|
rs.accessBase(
|
|
rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
|
|
pos, c.type, names.TYPE, true);
|
|
if (typeSym.kind == VAR)
|
|
((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
|
|
return make.QualIdent(typeSym);
|
|
case CLASS: case ARRAY:
|
|
if (target.hasClassLiterals()) {
|
|
VarSymbol sym = new VarSymbol(
|
|
STATIC | PUBLIC | FINAL, names._class,
|
|
syms.classType, type.tsym);
|
|
return make_at(pos).Select(make.Type(type), sym);
|
|
}
|
|
// replace with <cache == null ? cache = class$(tsig) : cache>
|
|
// where
|
|
// - <tsig> is the type signature of T,
|
|
// - <cache> is the cache variable for tsig.
|
|
String sig =
|
|
writer.xClassName(type).toString().replace('/', '.');
|
|
Symbol cs = cacheSym(pos, sig);
|
|
return make_at(pos).Conditional(
|
|
makeBinary(EQ, make.Ident(cs), makeNull()),
|
|
make.Assign(
|
|
make.Ident(cs),
|
|
make.App(
|
|
make.Ident(classDollarSym(pos)),
|
|
List.<JCExpression>of(make.Literal(CLASS, sig)
|
|
.setType(syms.stringType))))
|
|
.setType(types.erasure(syms.classType)),
|
|
make.Ident(cs)).setType(types.erasure(syms.classType));
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Code for enabling/disabling assertions.
|
|
*************************************************************************/
|
|
|
|
private ClassSymbol assertionsDisabledClassCache;
|
|
|
|
/**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
|
|
*/
|
|
private ClassSymbol assertionsDisabledClass() {
|
|
if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
|
|
|
|
assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC, outermostClassDef.sym).sym;
|
|
|
|
return assertionsDisabledClassCache;
|
|
}
|
|
|
|
// This code is not particularly robust if the user has
|
|
// previously declared a member named '$assertionsDisabled'.
|
|
// The same faulty idiom also appears in the translation of
|
|
// class literals above. We should report an error if a
|
|
// previous declaration is not synthetic.
|
|
|
|
private JCExpression assertFlagTest(DiagnosticPosition pos) {
|
|
// Outermost class may be either true class or an interface.
|
|
ClassSymbol outermostClass = outermostClassDef.sym;
|
|
|
|
//only classes can hold a non-public field, look for a usable one:
|
|
ClassSymbol container = !currentClass.isInterface() ? currentClass :
|
|
assertionsDisabledClass();
|
|
|
|
VarSymbol assertDisabledSym =
|
|
(VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
|
|
container.members());
|
|
if (assertDisabledSym == null) {
|
|
assertDisabledSym =
|
|
new VarSymbol(STATIC | FINAL | SYNTHETIC,
|
|
dollarAssertionsDisabled,
|
|
syms.booleanType,
|
|
container);
|
|
enterSynthetic(pos, assertDisabledSym, container.members());
|
|
Symbol desiredAssertionStatusSym = lookupMethod(pos,
|
|
names.desiredAssertionStatus,
|
|
types.erasure(syms.classType),
|
|
List.<Type>nil());
|
|
JCClassDecl containerDef = classDef(container);
|
|
make_at(containerDef.pos());
|
|
JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
|
|
classOfType(types.erasure(outermostClass.type),
|
|
containerDef.pos()),
|
|
desiredAssertionStatusSym)));
|
|
JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
|
|
notStatus);
|
|
containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
|
|
|
|
if (currentClass.isInterface()) {
|
|
//need to load the assertions enabled/disabled state while
|
|
//initializing the interface:
|
|
JCClassDecl currentClassDef = classDef(currentClass);
|
|
make_at(currentClassDef.pos());
|
|
JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
|
|
JCBlock clinit = make.Block(STATIC, List.<JCStatement>of(dummy));
|
|
currentClassDef.defs = currentClassDef.defs.prepend(clinit);
|
|
}
|
|
}
|
|
make_at(pos);
|
|
return makeUnary(NOT, make.Ident(assertDisabledSym));
|
|
}
|
|
|
|
|
|
/**************************************************************************
|
|
* Building blocks for let expressions
|
|
*************************************************************************/
|
|
|
|
interface TreeBuilder {
|
|
JCTree build(JCTree arg);
|
|
}
|
|
|
|
/** Construct an expression using the builder, with the given rval
|
|
* expression as an argument to the builder. However, the rval
|
|
* expression must be computed only once, even if used multiple
|
|
* times in the result of the builder. We do that by
|
|
* constructing a "let" expression that saves the rvalue into a
|
|
* temporary variable and then uses the temporary variable in
|
|
* place of the expression built by the builder. The complete
|
|
* resulting expression is of the form
|
|
* <pre>
|
|
* (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
|
|
* in (<b>BUILDER</b>(<b>TEMP</b>)))
|
|
* </pre>
|
|
* where <code><b>TEMP</b></code> is a newly declared variable
|
|
* in the let expression.
|
|
*/
|
|
JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
|
|
rval = TreeInfo.skipParens(rval);
|
|
switch (rval.getTag()) {
|
|
case LITERAL:
|
|
return builder.build(rval);
|
|
case IDENT:
|
|
JCIdent id = (JCIdent) rval;
|
|
if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
|
|
return builder.build(rval);
|
|
}
|
|
VarSymbol var =
|
|
new VarSymbol(FINAL|SYNTHETIC,
|
|
names.fromString(
|
|
target.syntheticNameChar()
|
|
+ "" + rval.hashCode()),
|
|
type,
|
|
currentMethodSym);
|
|
rval = convert(rval,type);
|
|
JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
|
|
JCTree built = builder.build(make.Ident(var));
|
|
JCTree res = make.LetExpr(def, built);
|
|
res.type = built.type;
|
|
return res;
|
|
}
|
|
|
|
// same as above, with the type of the temporary variable computed
|
|
JCTree abstractRval(JCTree rval, TreeBuilder builder) {
|
|
return abstractRval(rval, rval.type, builder);
|
|
}
|
|
|
|
// same as above, but for an expression that may be used as either
|
|
// an rvalue or an lvalue. This requires special handling for
|
|
// Select expressions, where we place the left-hand-side of the
|
|
// select in a temporary, and for Indexed expressions, where we
|
|
// place both the indexed expression and the index value in temps.
|
|
JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
|
|
lval = TreeInfo.skipParens(lval);
|
|
switch (lval.getTag()) {
|
|
case IDENT:
|
|
return builder.build(lval);
|
|
case SELECT: {
|
|
final JCFieldAccess s = (JCFieldAccess)lval;
|
|
JCTree selected = TreeInfo.skipParens(s.selected);
|
|
Symbol lid = TreeInfo.symbol(s.selected);
|
|
if (lid != null && lid.kind == TYP) return builder.build(lval);
|
|
return abstractRval(s.selected, new TreeBuilder() {
|
|
public JCTree build(final JCTree selected) {
|
|
return builder.build(make.Select((JCExpression)selected, s.sym));
|
|
}
|
|
});
|
|
}
|
|
case INDEXED: {
|
|
final JCArrayAccess i = (JCArrayAccess)lval;
|
|
return abstractRval(i.indexed, new TreeBuilder() {
|
|
public JCTree build(final JCTree indexed) {
|
|
return abstractRval(i.index, syms.intType, new TreeBuilder() {
|
|
public JCTree build(final JCTree index) {
|
|
JCTree newLval = make.Indexed((JCExpression)indexed,
|
|
(JCExpression)index);
|
|
newLval.setType(i.type);
|
|
return builder.build(newLval);
|
|
}
|
|
});
|
|
}
|
|
});
|
|
}
|
|
case TYPECAST: {
|
|
return abstractLval(((JCTypeCast)lval).expr, builder);
|
|
}
|
|
}
|
|
throw new AssertionError(lval);
|
|
}
|
|
|
|
// evaluate and discard the first expression, then evaluate the second.
|
|
JCTree makeComma(final JCTree expr1, final JCTree expr2) {
|
|
return abstractRval(expr1, new TreeBuilder() {
|
|
public JCTree build(final JCTree discarded) {
|
|
return expr2;
|
|
}
|
|
});
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Translation methods
|
|
*************************************************************************/
|
|
|
|
/** Visitor argument: enclosing operator node.
|
|
*/
|
|
private JCExpression enclOp;
|
|
|
|
/** Visitor method: Translate a single node.
|
|
* Attach the source position from the old tree to its replacement tree.
|
|
*/
|
|
@Override
|
|
public <T extends JCTree> T translate(T tree) {
|
|
if (tree == null) {
|
|
return null;
|
|
} else {
|
|
make_at(tree.pos());
|
|
T result = super.translate(tree);
|
|
if (endPosTable != null && result != tree) {
|
|
endPosTable.replaceTree(tree, result);
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/** Visitor method: Translate a single node, boxing or unboxing if needed.
|
|
*/
|
|
public <T extends JCTree> T translate(T tree, Type type) {
|
|
return (tree == null) ? null : boxIfNeeded(translate(tree), type);
|
|
}
|
|
|
|
/** Visitor method: Translate tree.
|
|
*/
|
|
public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
|
|
JCExpression prevEnclOp = this.enclOp;
|
|
this.enclOp = enclOp;
|
|
T res = translate(tree);
|
|
this.enclOp = prevEnclOp;
|
|
return res;
|
|
}
|
|
|
|
/** Visitor method: Translate list of trees.
|
|
*/
|
|
public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
|
|
JCExpression prevEnclOp = this.enclOp;
|
|
this.enclOp = enclOp;
|
|
List<T> res = translate(trees);
|
|
this.enclOp = prevEnclOp;
|
|
return res;
|
|
}
|
|
|
|
/** Visitor method: Translate list of trees.
|
|
*/
|
|
public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
|
|
if (trees == null) return null;
|
|
for (List<T> l = trees; l.nonEmpty(); l = l.tail)
|
|
l.head = translate(l.head, type);
|
|
return trees;
|
|
}
|
|
|
|
public void visitTopLevel(JCCompilationUnit tree) {
|
|
if (needPackageInfoClass(tree)) {
|
|
Name name = names.package_info;
|
|
long flags = Flags.ABSTRACT | Flags.INTERFACE;
|
|
if (target.isPackageInfoSynthetic())
|
|
// package-info is marked SYNTHETIC in JDK 1.6 and later releases
|
|
flags = flags | Flags.SYNTHETIC;
|
|
JCClassDecl packageAnnotationsClass
|
|
= make.ClassDef(make.Modifiers(flags,
|
|
tree.packageAnnotations),
|
|
name, List.<JCTypeParameter>nil(),
|
|
null, List.<JCExpression>nil(), List.<JCTree>nil());
|
|
ClassSymbol c = tree.packge.package_info;
|
|
c.flags_field |= flags;
|
|
c.setAttributes(tree.packge);
|
|
ClassType ctype = (ClassType) c.type;
|
|
ctype.supertype_field = syms.objectType;
|
|
ctype.interfaces_field = List.nil();
|
|
packageAnnotationsClass.sym = c;
|
|
|
|
translated.append(packageAnnotationsClass);
|
|
}
|
|
}
|
|
// where
|
|
private boolean needPackageInfoClass(JCCompilationUnit tree) {
|
|
switch (pkginfoOpt) {
|
|
case ALWAYS:
|
|
return true;
|
|
case LEGACY:
|
|
return tree.packageAnnotations.nonEmpty();
|
|
case NONEMPTY:
|
|
for (Attribute.Compound a :
|
|
tree.packge.getDeclarationAttributes()) {
|
|
Attribute.RetentionPolicy p = types.getRetention(a);
|
|
if (p != Attribute.RetentionPolicy.SOURCE)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
throw new AssertionError();
|
|
}
|
|
|
|
public void visitClassDef(JCClassDecl tree) {
|
|
Env<AttrContext> prevEnv = attrEnv;
|
|
ClassSymbol currentClassPrev = currentClass;
|
|
MethodSymbol currentMethodSymPrev = currentMethodSym;
|
|
|
|
currentClass = tree.sym;
|
|
currentMethodSym = null;
|
|
attrEnv = typeEnvs.remove(currentClass);
|
|
if (attrEnv == null)
|
|
attrEnv = prevEnv;
|
|
|
|
classdefs.put(currentClass, tree);
|
|
|
|
proxies = proxies.dup(currentClass);
|
|
List<VarSymbol> prevOuterThisStack = outerThisStack;
|
|
|
|
// If this is an enum definition
|
|
if ((tree.mods.flags & ENUM) != 0 &&
|
|
(types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
|
|
visitEnumDef(tree);
|
|
|
|
// If this is a nested class, define a this$n field for
|
|
// it and add to proxies.
|
|
JCVariableDecl otdef = null;
|
|
if (currentClass.hasOuterInstance())
|
|
otdef = outerThisDef(tree.pos, currentClass);
|
|
|
|
// If this is a local class, define proxies for all its free variables.
|
|
List<JCVariableDecl> fvdefs = freevarDefs(
|
|
tree.pos, freevars(currentClass), currentClass);
|
|
|
|
// Recursively translate superclass, interfaces.
|
|
tree.extending = translate(tree.extending);
|
|
tree.implementing = translate(tree.implementing);
|
|
|
|
if (currentClass.isLocal()) {
|
|
ClassSymbol encl = currentClass.owner.enclClass();
|
|
if (encl.trans_local == null) {
|
|
encl.trans_local = List.nil();
|
|
}
|
|
encl.trans_local = encl.trans_local.prepend(currentClass);
|
|
}
|
|
|
|
// Recursively translate members, taking into account that new members
|
|
// might be created during the translation and prepended to the member
|
|
// list `tree.defs'.
|
|
List<JCTree> seen = List.nil();
|
|
while (tree.defs != seen) {
|
|
List<JCTree> unseen = tree.defs;
|
|
for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
|
|
JCTree outermostMemberDefPrev = outermostMemberDef;
|
|
if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
|
|
l.head = translate(l.head);
|
|
outermostMemberDef = outermostMemberDefPrev;
|
|
}
|
|
seen = unseen;
|
|
}
|
|
|
|
// Convert a protected modifier to public, mask static modifier.
|
|
if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
|
|
tree.mods.flags &= ClassFlags;
|
|
|
|
// Convert name to flat representation, replacing '.' by '$'.
|
|
tree.name = Convert.shortName(currentClass.flatName());
|
|
|
|
// Add this$n and free variables proxy definitions to class.
|
|
|
|
for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
|
|
tree.defs = tree.defs.prepend(l.head);
|
|
enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
|
|
}
|
|
if (currentClass.hasOuterInstance()) {
|
|
tree.defs = tree.defs.prepend(otdef);
|
|
enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
|
|
}
|
|
|
|
proxies = proxies.leave();
|
|
outerThisStack = prevOuterThisStack;
|
|
|
|
// Append translated tree to `translated' queue.
|
|
translated.append(tree);
|
|
|
|
attrEnv = prevEnv;
|
|
currentClass = currentClassPrev;
|
|
currentMethodSym = currentMethodSymPrev;
|
|
|
|
// Return empty block {} as a placeholder for an inner class.
|
|
result = make_at(tree.pos()).Block(SYNTHETIC, List.<JCStatement>nil());
|
|
}
|
|
|
|
/** Translate an enum class. */
|
|
private void visitEnumDef(JCClassDecl tree) {
|
|
make_at(tree.pos());
|
|
|
|
// add the supertype, if needed
|
|
if (tree.extending == null)
|
|
tree.extending = make.Type(types.supertype(tree.type));
|
|
|
|
// classOfType adds a cache field to tree.defs unless
|
|
// target.hasClassLiterals().
|
|
JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
|
|
setType(types.erasure(syms.classType));
|
|
|
|
// process each enumeration constant, adding implicit constructor parameters
|
|
int nextOrdinal = 0;
|
|
ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
|
|
ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
|
|
ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
|
|
for (List<JCTree> defs = tree.defs;
|
|
defs.nonEmpty();
|
|
defs=defs.tail) {
|
|
if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
|
|
JCVariableDecl var = (JCVariableDecl)defs.head;
|
|
visitEnumConstantDef(var, nextOrdinal++);
|
|
values.append(make.QualIdent(var.sym));
|
|
enumDefs.append(var);
|
|
} else {
|
|
otherDefs.append(defs.head);
|
|
}
|
|
}
|
|
|
|
// private static final T[] #VALUES = { a, b, c };
|
|
Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
|
|
while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
|
|
valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
|
|
Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
|
|
VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
|
|
valuesName,
|
|
arrayType,
|
|
tree.type.tsym);
|
|
JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
|
|
List.<JCExpression>nil(),
|
|
values.toList());
|
|
newArray.type = arrayType;
|
|
enumDefs.append(make.VarDef(valuesVar, newArray));
|
|
tree.sym.members().enter(valuesVar);
|
|
|
|
Symbol valuesSym = lookupMethod(tree.pos(), names.values,
|
|
tree.type, List.<Type>nil());
|
|
List<JCStatement> valuesBody;
|
|
if (useClone()) {
|
|
// return (T[]) $VALUES.clone();
|
|
JCTypeCast valuesResult =
|
|
make.TypeCast(valuesSym.type.getReturnType(),
|
|
make.App(make.Select(make.Ident(valuesVar),
|
|
syms.arrayCloneMethod)));
|
|
valuesBody = List.<JCStatement>of(make.Return(valuesResult));
|
|
} else {
|
|
// template: T[] $result = new T[$values.length];
|
|
Name resultName = names.fromString(target.syntheticNameChar() + "result");
|
|
while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
|
|
resultName = names.fromString(resultName + "" + target.syntheticNameChar());
|
|
VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
|
|
resultName,
|
|
arrayType,
|
|
valuesSym);
|
|
JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
|
|
List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
|
|
null);
|
|
resultArray.type = arrayType;
|
|
JCVariableDecl decl = make.VarDef(resultVar, resultArray);
|
|
|
|
// template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
|
|
if (systemArraycopyMethod == null) {
|
|
systemArraycopyMethod =
|
|
new MethodSymbol(PUBLIC | STATIC,
|
|
names.fromString("arraycopy"),
|
|
new MethodType(List.<Type>of(syms.objectType,
|
|
syms.intType,
|
|
syms.objectType,
|
|
syms.intType,
|
|
syms.intType),
|
|
syms.voidType,
|
|
List.<Type>nil(),
|
|
syms.methodClass),
|
|
syms.systemType.tsym);
|
|
}
|
|
JCStatement copy =
|
|
make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
|
|
systemArraycopyMethod),
|
|
List.of(make.Ident(valuesVar), make.Literal(0),
|
|
make.Ident(resultVar), make.Literal(0),
|
|
make.Select(make.Ident(valuesVar), syms.lengthVar))));
|
|
|
|
// template: return $result;
|
|
JCStatement ret = make.Return(make.Ident(resultVar));
|
|
valuesBody = List.<JCStatement>of(decl, copy, ret);
|
|
}
|
|
|
|
JCMethodDecl valuesDef =
|
|
make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
|
|
|
|
enumDefs.append(valuesDef);
|
|
|
|
if (debugLower)
|
|
System.err.println(tree.sym + ".valuesDef = " + valuesDef);
|
|
|
|
/** The template for the following code is:
|
|
*
|
|
* public static E valueOf(String name) {
|
|
* return (E)Enum.valueOf(E.class, name);
|
|
* }
|
|
*
|
|
* where E is tree.sym
|
|
*/
|
|
MethodSymbol valueOfSym = lookupMethod(tree.pos(),
|
|
names.valueOf,
|
|
tree.sym.type,
|
|
List.of(syms.stringType));
|
|
Assert.check((valueOfSym.flags() & STATIC) != 0);
|
|
VarSymbol nameArgSym = valueOfSym.params.head;
|
|
JCIdent nameVal = make.Ident(nameArgSym);
|
|
JCStatement enum_ValueOf =
|
|
make.Return(make.TypeCast(tree.sym.type,
|
|
makeCall(make.Ident(syms.enumSym),
|
|
names.valueOf,
|
|
List.of(e_class, nameVal))));
|
|
JCMethodDecl valueOf = make.MethodDef(valueOfSym,
|
|
make.Block(0, List.of(enum_ValueOf)));
|
|
nameVal.sym = valueOf.params.head.sym;
|
|
if (debugLower)
|
|
System.err.println(tree.sym + ".valueOf = " + valueOf);
|
|
enumDefs.append(valueOf);
|
|
|
|
enumDefs.appendList(otherDefs.toList());
|
|
tree.defs = enumDefs.toList();
|
|
}
|
|
// where
|
|
private MethodSymbol systemArraycopyMethod;
|
|
private boolean useClone() {
|
|
try {
|
|
Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
|
|
return (e.sym != null);
|
|
}
|
|
catch (CompletionFailure e) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/** Translate an enumeration constant and its initializer. */
|
|
private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
|
|
JCNewClass varDef = (JCNewClass)var.init;
|
|
varDef.args = varDef.args.
|
|
prepend(makeLit(syms.intType, ordinal)).
|
|
prepend(makeLit(syms.stringType, var.name.toString()));
|
|
}
|
|
|
|
public void visitMethodDef(JCMethodDecl tree) {
|
|
if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
|
|
// Add "String $enum$name, int $enum$ordinal" to the beginning of the
|
|
// argument list for each constructor of an enum.
|
|
JCVariableDecl nameParam = make_at(tree.pos()).
|
|
Param(names.fromString(target.syntheticNameChar() +
|
|
"enum" + target.syntheticNameChar() + "name"),
|
|
syms.stringType, tree.sym);
|
|
nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
|
|
JCVariableDecl ordParam = make.
|
|
Param(names.fromString(target.syntheticNameChar() +
|
|
"enum" + target.syntheticNameChar() +
|
|
"ordinal"),
|
|
syms.intType, tree.sym);
|
|
ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
|
|
|
|
tree.params = tree.params.prepend(ordParam).prepend(nameParam);
|
|
|
|
MethodSymbol m = tree.sym;
|
|
m.extraParams = m.extraParams.prepend(ordParam.sym);
|
|
m.extraParams = m.extraParams.prepend(nameParam.sym);
|
|
Type olderasure = m.erasure(types);
|
|
m.erasure_field = new MethodType(
|
|
olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
|
|
olderasure.getReturnType(),
|
|
olderasure.getThrownTypes(),
|
|
syms.methodClass);
|
|
}
|
|
|
|
JCMethodDecl prevMethodDef = currentMethodDef;
|
|
MethodSymbol prevMethodSym = currentMethodSym;
|
|
try {
|
|
currentMethodDef = tree;
|
|
currentMethodSym = tree.sym;
|
|
visitMethodDefInternal(tree);
|
|
} finally {
|
|
currentMethodDef = prevMethodDef;
|
|
currentMethodSym = prevMethodSym;
|
|
}
|
|
}
|
|
//where
|
|
private void visitMethodDefInternal(JCMethodDecl tree) {
|
|
if (tree.name == names.init &&
|
|
(currentClass.isInner() || currentClass.isLocal())) {
|
|
// We are seeing a constructor of an inner class.
|
|
MethodSymbol m = tree.sym;
|
|
|
|
// Push a new proxy scope for constructor parameters.
|
|
// and create definitions for any this$n and proxy parameters.
|
|
proxies = proxies.dup(m);
|
|
List<VarSymbol> prevOuterThisStack = outerThisStack;
|
|
List<VarSymbol> fvs = freevars(currentClass);
|
|
JCVariableDecl otdef = null;
|
|
if (currentClass.hasOuterInstance())
|
|
otdef = outerThisDef(tree.pos, m);
|
|
List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
|
|
|
|
// Recursively translate result type, parameters and thrown list.
|
|
tree.restype = translate(tree.restype);
|
|
tree.params = translateVarDefs(tree.params);
|
|
tree.thrown = translate(tree.thrown);
|
|
|
|
// when compiling stubs, don't process body
|
|
if (tree.body == null) {
|
|
result = tree;
|
|
return;
|
|
}
|
|
|
|
// Add this$n (if needed) in front of and free variables behind
|
|
// constructor parameter list.
|
|
tree.params = tree.params.appendList(fvdefs);
|
|
if (currentClass.hasOuterInstance())
|
|
tree.params = tree.params.prepend(otdef);
|
|
|
|
// If this is an initial constructor, i.e., it does not start with
|
|
// this(...), insert initializers for this$n and proxies
|
|
// before (pre-1.4, after) the call to superclass constructor.
|
|
JCStatement selfCall = translate(tree.body.stats.head);
|
|
|
|
List<JCStatement> added = List.nil();
|
|
if (fvs.nonEmpty()) {
|
|
List<Type> addedargtypes = List.nil();
|
|
for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
|
|
if (TreeInfo.isInitialConstructor(tree)) {
|
|
final Name pName = proxyName(l.head.name);
|
|
m.capturedLocals =
|
|
m.capturedLocals.append((VarSymbol)
|
|
(proxies.lookup(pName).sym));
|
|
added = added.prepend(
|
|
initField(tree.body.pos, pName));
|
|
}
|
|
addedargtypes = addedargtypes.prepend(l.head.erasure(types));
|
|
}
|
|
Type olderasure = m.erasure(types);
|
|
m.erasure_field = new MethodType(
|
|
olderasure.getParameterTypes().appendList(addedargtypes),
|
|
olderasure.getReturnType(),
|
|
olderasure.getThrownTypes(),
|
|
syms.methodClass);
|
|
}
|
|
if (currentClass.hasOuterInstance() &&
|
|
TreeInfo.isInitialConstructor(tree))
|
|
{
|
|
added = added.prepend(initOuterThis(tree.body.pos));
|
|
}
|
|
|
|
// pop local variables from proxy stack
|
|
proxies = proxies.leave();
|
|
|
|
// recursively translate following local statements and
|
|
// combine with this- or super-call
|
|
List<JCStatement> stats = translate(tree.body.stats.tail);
|
|
if (target.initializeFieldsBeforeSuper())
|
|
tree.body.stats = stats.prepend(selfCall).prependList(added);
|
|
else
|
|
tree.body.stats = stats.prependList(added).prepend(selfCall);
|
|
|
|
outerThisStack = prevOuterThisStack;
|
|
} else {
|
|
Map<Symbol, Symbol> prevLambdaTranslationMap =
|
|
lambdaTranslationMap;
|
|
try {
|
|
lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
|
|
tree.sym.name.startsWith(names.lambda) ?
|
|
makeTranslationMap(tree) : null;
|
|
super.visitMethodDef(tree);
|
|
} finally {
|
|
lambdaTranslationMap = prevLambdaTranslationMap;
|
|
}
|
|
}
|
|
result = tree;
|
|
}
|
|
//where
|
|
private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
|
|
Map<Symbol, Symbol> translationMap = new HashMap<Symbol,Symbol>();
|
|
for (JCVariableDecl vd : tree.params) {
|
|
Symbol p = vd.sym;
|
|
if (p != p.baseSymbol()) {
|
|
translationMap.put(p.baseSymbol(), p);
|
|
}
|
|
}
|
|
return translationMap;
|
|
}
|
|
|
|
public void visitAnnotatedType(JCAnnotatedType tree) {
|
|
// No need to retain type annotations in the tree
|
|
// tree.annotations = translate(tree.annotations);
|
|
tree.annotations = List.nil();
|
|
tree.underlyingType = translate(tree.underlyingType);
|
|
// but maintain type annotations in the type.
|
|
if (tree.type.isAnnotated()) {
|
|
tree.type = tree.underlyingType.type.unannotatedType().annotatedType(tree.type.getAnnotationMirrors());
|
|
} else if (tree.underlyingType.type.isAnnotated()) {
|
|
tree.type = tree.underlyingType.type;
|
|
}
|
|
result = tree;
|
|
}
|
|
|
|
public void visitTypeCast(JCTypeCast tree) {
|
|
tree.clazz = translate(tree.clazz);
|
|
if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
|
|
tree.expr = translate(tree.expr, tree.type);
|
|
else
|
|
tree.expr = translate(tree.expr);
|
|
result = tree;
|
|
}
|
|
|
|
public void visitNewClass(JCNewClass tree) {
|
|
ClassSymbol c = (ClassSymbol)tree.constructor.owner;
|
|
|
|
// Box arguments, if necessary
|
|
boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
|
|
List<Type> argTypes = tree.constructor.type.getParameterTypes();
|
|
if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
|
|
tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
|
|
tree.varargsElement = null;
|
|
|
|
// If created class is local, add free variables after
|
|
// explicit constructor arguments.
|
|
if (c.isLocal()) {
|
|
tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
|
|
}
|
|
|
|
// If an access constructor is used, append null as a last argument.
|
|
Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
|
|
if (constructor != tree.constructor) {
|
|
tree.args = tree.args.append(makeNull());
|
|
tree.constructor = constructor;
|
|
}
|
|
|
|
// If created class has an outer instance, and new is qualified, pass
|
|
// qualifier as first argument. If new is not qualified, pass the
|
|
// correct outer instance as first argument.
|
|
if (c.hasOuterInstance()) {
|
|
JCExpression thisArg;
|
|
if (tree.encl != null) {
|
|
thisArg = attr.makeNullCheck(translate(tree.encl));
|
|
thisArg.type = tree.encl.type;
|
|
} else if (c.isLocal()) {
|
|
// local class
|
|
thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
|
|
} else {
|
|
// nested class
|
|
thisArg = makeOwnerThis(tree.pos(), c, false);
|
|
}
|
|
tree.args = tree.args.prepend(thisArg);
|
|
}
|
|
tree.encl = null;
|
|
|
|
// If we have an anonymous class, create its flat version, rather
|
|
// than the class or interface following new.
|
|
if (tree.def != null) {
|
|
translate(tree.def);
|
|
tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
|
|
tree.def = null;
|
|
} else {
|
|
tree.clazz = access(c, tree.clazz, enclOp, false);
|
|
}
|
|
result = tree;
|
|
}
|
|
|
|
// Simplify conditionals with known constant controlling expressions.
|
|
// This allows us to avoid generating supporting declarations for
|
|
// the dead code, which will not be eliminated during code generation.
|
|
// Note that Flow.isFalse and Flow.isTrue only return true
|
|
// for constant expressions in the sense of JLS 15.27, which
|
|
// are guaranteed to have no side-effects. More aggressive
|
|
// constant propagation would require that we take care to
|
|
// preserve possible side-effects in the condition expression.
|
|
|
|
/** Visitor method for conditional expressions.
|
|
*/
|
|
@Override
|
|
public void visitConditional(JCConditional tree) {
|
|
JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
|
|
if (cond.type.isTrue()) {
|
|
result = convert(translate(tree.truepart, tree.type), tree.type);
|
|
addPrunedInfo(cond);
|
|
} else if (cond.type.isFalse()) {
|
|
result = convert(translate(tree.falsepart, tree.type), tree.type);
|
|
addPrunedInfo(cond);
|
|
} else {
|
|
// Condition is not a compile-time constant.
|
|
tree.truepart = translate(tree.truepart, tree.type);
|
|
tree.falsepart = translate(tree.falsepart, tree.type);
|
|
result = tree;
|
|
}
|
|
}
|
|
//where
|
|
private JCTree convert(JCTree tree, Type pt) {
|
|
if (tree.type == pt || tree.type.hasTag(BOT))
|
|
return tree;
|
|
JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
|
|
result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
|
|
: pt;
|
|
return result;
|
|
}
|
|
|
|
/** Visitor method for if statements.
|
|
*/
|
|
public void visitIf(JCIf tree) {
|
|
JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
|
|
if (cond.type.isTrue()) {
|
|
result = translate(tree.thenpart);
|
|
addPrunedInfo(cond);
|
|
} else if (cond.type.isFalse()) {
|
|
if (tree.elsepart != null) {
|
|
result = translate(tree.elsepart);
|
|
} else {
|
|
result = make.Skip();
|
|
}
|
|
addPrunedInfo(cond);
|
|
} else {
|
|
// Condition is not a compile-time constant.
|
|
tree.thenpart = translate(tree.thenpart);
|
|
tree.elsepart = translate(tree.elsepart);
|
|
result = tree;
|
|
}
|
|
}
|
|
|
|
/** Visitor method for assert statements. Translate them away.
|
|
*/
|
|
public void visitAssert(JCAssert tree) {
|
|
DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
|
|
tree.cond = translate(tree.cond, syms.booleanType);
|
|
if (!tree.cond.type.isTrue()) {
|
|
JCExpression cond = assertFlagTest(tree.pos());
|
|
List<JCExpression> exnArgs = (tree.detail == null) ?
|
|
List.<JCExpression>nil() : List.of(translate(tree.detail));
|
|
if (!tree.cond.type.isFalse()) {
|
|
cond = makeBinary
|
|
(AND,
|
|
cond,
|
|
makeUnary(NOT, tree.cond));
|
|
}
|
|
result =
|
|
make.If(cond,
|
|
make_at(tree).
|
|
Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
|
|
null);
|
|
} else {
|
|
result = make.Skip();
|
|
}
|
|
}
|
|
|
|
public void visitApply(JCMethodInvocation tree) {
|
|
Symbol meth = TreeInfo.symbol(tree.meth);
|
|
List<Type> argtypes = meth.type.getParameterTypes();
|
|
if (allowEnums &&
|
|
meth.name==names.init &&
|
|
meth.owner == syms.enumSym)
|
|
argtypes = argtypes.tail.tail;
|
|
tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
|
|
tree.varargsElement = null;
|
|
Name methName = TreeInfo.name(tree.meth);
|
|
if (meth.name==names.init) {
|
|
// We are seeing a this(...) or super(...) constructor call.
|
|
// If an access constructor is used, append null as a last argument.
|
|
Symbol constructor = accessConstructor(tree.pos(), meth);
|
|
if (constructor != meth) {
|
|
tree.args = tree.args.append(makeNull());
|
|
TreeInfo.setSymbol(tree.meth, constructor);
|
|
}
|
|
|
|
// If we are calling a constructor of a local class, add
|
|
// free variables after explicit constructor arguments.
|
|
ClassSymbol c = (ClassSymbol)constructor.owner;
|
|
if (c.isLocal()) {
|
|
tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
|
|
}
|
|
|
|
// If we are calling a constructor of an enum class, pass
|
|
// along the name and ordinal arguments
|
|
if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
|
|
List<JCVariableDecl> params = currentMethodDef.params;
|
|
if (currentMethodSym.owner.hasOuterInstance())
|
|
params = params.tail; // drop this$n
|
|
tree.args = tree.args
|
|
.prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
|
|
.prepend(make.Ident(params.head.sym)); // name
|
|
}
|
|
|
|
// If we are calling a constructor of a class with an outer
|
|
// instance, and the call
|
|
// is qualified, pass qualifier as first argument in front of
|
|
// the explicit constructor arguments. If the call
|
|
// is not qualified, pass the correct outer instance as
|
|
// first argument.
|
|
if (c.hasOuterInstance()) {
|
|
JCExpression thisArg;
|
|
if (tree.meth.hasTag(SELECT)) {
|
|
thisArg = attr.
|
|
makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
|
|
tree.meth = make.Ident(constructor);
|
|
((JCIdent) tree.meth).name = methName;
|
|
} else if (c.isLocal() || methName == names._this){
|
|
// local class or this() call
|
|
thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
|
|
} else {
|
|
// super() call of nested class - never pick 'this'
|
|
thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
|
|
}
|
|
tree.args = tree.args.prepend(thisArg);
|
|
}
|
|
} else {
|
|
// We are seeing a normal method invocation; translate this as usual.
|
|
tree.meth = translate(tree.meth);
|
|
|
|
// If the translated method itself is an Apply tree, we are
|
|
// seeing an access method invocation. In this case, append
|
|
// the method arguments to the arguments of the access method.
|
|
if (tree.meth.hasTag(APPLY)) {
|
|
JCMethodInvocation app = (JCMethodInvocation)tree.meth;
|
|
app.args = tree.args.prependList(app.args);
|
|
result = app;
|
|
return;
|
|
}
|
|
}
|
|
result = tree;
|
|
}
|
|
|
|
List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
|
|
List<JCExpression> args = _args;
|
|
if (parameters.isEmpty()) return args;
|
|
boolean anyChanges = false;
|
|
ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
|
|
while (parameters.tail.nonEmpty()) {
|
|
JCExpression arg = translate(args.head, parameters.head);
|
|
anyChanges |= (arg != args.head);
|
|
result.append(arg);
|
|
args = args.tail;
|
|
parameters = parameters.tail;
|
|
}
|
|
Type parameter = parameters.head;
|
|
if (varargsElement != null) {
|
|
anyChanges = true;
|
|
ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
|
|
while (args.nonEmpty()) {
|
|
JCExpression arg = translate(args.head, varargsElement);
|
|
elems.append(arg);
|
|
args = args.tail;
|
|
}
|
|
JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
|
|
List.<JCExpression>nil(),
|
|
elems.toList());
|
|
boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
|
|
result.append(boxedArgs);
|
|
} else {
|
|
if (args.length() != 1) throw new AssertionError(args);
|
|
JCExpression arg = translate(args.head, parameter);
|
|
anyChanges |= (arg != args.head);
|
|
result.append(arg);
|
|
if (!anyChanges) return _args;
|
|
}
|
|
return result.toList();
|
|
}
|
|
|
|
/** Expand a boxing or unboxing conversion if needed. */
|
|
@SuppressWarnings("unchecked") // XXX unchecked
|
|
<T extends JCTree> T boxIfNeeded(T tree, Type type) {
|
|
boolean havePrimitive = tree.type.isPrimitive();
|
|
if (havePrimitive == type.isPrimitive())
|
|
return tree;
|
|
if (havePrimitive) {
|
|
Type unboxedTarget = types.unboxedType(type);
|
|
if (!unboxedTarget.hasTag(NONE)) {
|
|
if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
|
|
tree.type = unboxedTarget.constType(tree.type.constValue());
|
|
return (T)boxPrimitive((JCExpression)tree, type);
|
|
} else {
|
|
tree = (T)boxPrimitive((JCExpression)tree);
|
|
}
|
|
} else {
|
|
tree = (T)unbox((JCExpression)tree, type);
|
|
}
|
|
return tree;
|
|
}
|
|
|
|
/** Box up a single primitive expression. */
|
|
JCExpression boxPrimitive(JCExpression tree) {
|
|
return boxPrimitive(tree, types.boxedClass(tree.type).type);
|
|
}
|
|
|
|
/** Box up a single primitive expression. */
|
|
JCExpression boxPrimitive(JCExpression tree, Type box) {
|
|
make_at(tree.pos());
|
|
if (target.boxWithConstructors()) {
|
|
Symbol ctor = lookupConstructor(tree.pos(),
|
|
box,
|
|
List.<Type>nil()
|
|
.prepend(tree.type));
|
|
return make.Create(ctor, List.of(tree));
|
|
} else {
|
|
Symbol valueOfSym = lookupMethod(tree.pos(),
|
|
names.valueOf,
|
|
box,
|
|
List.<Type>nil()
|
|
.prepend(tree.type));
|
|
return make.App(make.QualIdent(valueOfSym), List.of(tree));
|
|
}
|
|
}
|
|
|
|
/** Unbox an object to a primitive value. */
|
|
JCExpression unbox(JCExpression tree, Type primitive) {
|
|
Type unboxedType = types.unboxedType(tree.type);
|
|
if (unboxedType.hasTag(NONE)) {
|
|
unboxedType = primitive;
|
|
if (!unboxedType.isPrimitive())
|
|
throw new AssertionError(unboxedType);
|
|
make_at(tree.pos());
|
|
tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
|
|
} else {
|
|
// There must be a conversion from unboxedType to primitive.
|
|
if (!types.isSubtype(unboxedType, primitive))
|
|
throw new AssertionError(tree);
|
|
}
|
|
make_at(tree.pos());
|
|
Symbol valueSym = lookupMethod(tree.pos(),
|
|
unboxedType.tsym.name.append(names.Value), // x.intValue()
|
|
tree.type,
|
|
List.<Type>nil());
|
|
return make.App(make.Select(tree, valueSym));
|
|
}
|
|
|
|
/** Visitor method for parenthesized expressions.
|
|
* If the subexpression has changed, omit the parens.
|
|
*/
|
|
public void visitParens(JCParens tree) {
|
|
JCTree expr = translate(tree.expr);
|
|
result = ((expr == tree.expr) ? tree : expr);
|
|
}
|
|
|
|
public void visitIndexed(JCArrayAccess tree) {
|
|
tree.indexed = translate(tree.indexed);
|
|
tree.index = translate(tree.index, syms.intType);
|
|
result = tree;
|
|
}
|
|
|
|
public void visitAssign(JCAssign tree) {
|
|
tree.lhs = translate(tree.lhs, tree);
|
|
tree.rhs = translate(tree.rhs, tree.lhs.type);
|
|
|
|
// If translated left hand side is an Apply, we are
|
|
// seeing an access method invocation. In this case, append
|
|
// right hand side as last argument of the access method.
|
|
if (tree.lhs.hasTag(APPLY)) {
|
|
JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
|
|
app.args = List.of(tree.rhs).prependList(app.args);
|
|
result = app;
|
|
} else {
|
|
result = tree;
|
|
}
|
|
}
|
|
|
|
public void visitAssignop(final JCAssignOp tree) {
|
|
JCTree lhsAccess = access(TreeInfo.skipParens(tree.lhs));
|
|
final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
|
|
tree.operator.type.getReturnType().isPrimitive();
|
|
|
|
if (boxingReq || lhsAccess.hasTag(APPLY)) {
|
|
// boxing required; need to rewrite as x = (unbox typeof x)(x op y);
|
|
// or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
|
|
// (but without recomputing x)
|
|
JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
|
|
public JCTree build(final JCTree lhs) {
|
|
JCTree.Tag newTag = tree.getTag().noAssignOp();
|
|
// Erasure (TransTypes) can change the type of
|
|
// tree.lhs. However, we can still get the
|
|
// unerased type of tree.lhs as it is stored
|
|
// in tree.type in Attr.
|
|
Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
|
|
newTag,
|
|
attrEnv,
|
|
tree.type,
|
|
tree.rhs.type);
|
|
JCExpression expr = (JCExpression)lhs;
|
|
if (expr.type != tree.type)
|
|
expr = make.TypeCast(tree.type, expr);
|
|
JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
|
|
opResult.operator = newOperator;
|
|
opResult.type = newOperator.type.getReturnType();
|
|
JCExpression newRhs = boxingReq ?
|
|
make.TypeCast(types.unboxedType(tree.type), opResult) :
|
|
opResult;
|
|
return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
|
|
}
|
|
});
|
|
result = translate(newTree);
|
|
return;
|
|
}
|
|
tree.lhs = translate(tree.lhs, tree);
|
|
tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
|
|
|
|
// If translated left hand side is an Apply, we are
|
|
// seeing an access method invocation. In this case, append
|
|
// right hand side as last argument of the access method.
|
|
if (tree.lhs.hasTag(APPLY)) {
|
|
JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
|
|
// if operation is a += on strings,
|
|
// make sure to convert argument to string
|
|
JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
|
|
? makeString(tree.rhs)
|
|
: tree.rhs;
|
|
app.args = List.of(rhs).prependList(app.args);
|
|
result = app;
|
|
} else {
|
|
result = tree;
|
|
}
|
|
}
|
|
|
|
/** Lower a tree of the form e++ or e-- where e is an object type */
|
|
JCTree lowerBoxedPostop(final JCUnary tree) {
|
|
// translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
|
|
// or
|
|
// translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
|
|
// where OP is += or -=
|
|
final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
|
|
return abstractLval(tree.arg, new TreeBuilder() {
|
|
public JCTree build(final JCTree tmp1) {
|
|
return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
|
|
public JCTree build(final JCTree tmp2) {
|
|
JCTree.Tag opcode = (tree.hasTag(POSTINC))
|
|
? PLUS_ASG : MINUS_ASG;
|
|
JCTree lhs = cast
|
|
? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
|
|
: tmp1;
|
|
JCTree update = makeAssignop(opcode,
|
|
lhs,
|
|
make.Literal(1));
|
|
return makeComma(update, tmp2);
|
|
}
|
|
});
|
|
}
|
|
});
|
|
}
|
|
|
|
public void visitUnary(JCUnary tree) {
|
|
boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
|
|
if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
|
|
switch(tree.getTag()) {
|
|
case PREINC: // ++ e
|
|
// translate to e += 1
|
|
case PREDEC: // -- e
|
|
// translate to e -= 1
|
|
{
|
|
JCTree.Tag opcode = (tree.hasTag(PREINC))
|
|
? PLUS_ASG : MINUS_ASG;
|
|
JCAssignOp newTree = makeAssignop(opcode,
|
|
tree.arg,
|
|
make.Literal(1));
|
|
result = translate(newTree, tree.type);
|
|
return;
|
|
}
|
|
case POSTINC: // e ++
|
|
case POSTDEC: // e --
|
|
{
|
|
result = translate(lowerBoxedPostop(tree), tree.type);
|
|
return;
|
|
}
|
|
}
|
|
throw new AssertionError(tree);
|
|
}
|
|
|
|
tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
|
|
|
|
if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
|
|
tree.type = cfolder.fold1(bool_not, tree.arg.type);
|
|
}
|
|
|
|
// If translated left hand side is an Apply, we are
|
|
// seeing an access method invocation. In this case, return
|
|
// that access method invocation as result.
|
|
if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
|
|
result = tree.arg;
|
|
} else {
|
|
result = tree;
|
|
}
|
|
}
|
|
|
|
public void visitBinary(JCBinary tree) {
|
|
List<Type> formals = tree.operator.type.getParameterTypes();
|
|
JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
|
|
switch (tree.getTag()) {
|
|
case OR:
|
|
if (lhs.type.isTrue()) {
|
|
result = lhs;
|
|
return;
|
|
}
|
|
if (lhs.type.isFalse()) {
|
|
result = translate(tree.rhs, formals.tail.head);
|
|
return;
|
|
}
|
|
break;
|
|
case AND:
|
|
if (lhs.type.isFalse()) {
|
|
result = lhs;
|
|
return;
|
|
}
|
|
if (lhs.type.isTrue()) {
|
|
result = translate(tree.rhs, formals.tail.head);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
tree.rhs = translate(tree.rhs, formals.tail.head);
|
|
result = tree;
|
|
}
|
|
|
|
public void visitIdent(JCIdent tree) {
|
|
result = access(tree.sym, tree, enclOp, false);
|
|
}
|
|
|
|
/** Translate away the foreach loop. */
|
|
public void visitForeachLoop(JCEnhancedForLoop tree) {
|
|
if (types.elemtype(tree.expr.type) == null)
|
|
visitIterableForeachLoop(tree);
|
|
else
|
|
visitArrayForeachLoop(tree);
|
|
}
|
|
// where
|
|
/**
|
|
* A statement of the form
|
|
*
|
|
* <pre>
|
|
* for ( T v : arrayexpr ) stmt;
|
|
* </pre>
|
|
*
|
|
* (where arrayexpr is of an array type) gets translated to
|
|
*
|
|
* <pre>{@code
|
|
* for ( { arraytype #arr = arrayexpr;
|
|
* int #len = array.length;
|
|
* int #i = 0; };
|
|
* #i < #len; i$++ ) {
|
|
* T v = arr$[#i];
|
|
* stmt;
|
|
* }
|
|
* }</pre>
|
|
*
|
|
* where #arr, #len, and #i are freshly named synthetic local variables.
|
|
*/
|
|
private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
|
|
make_at(tree.expr.pos());
|
|
VarSymbol arraycache = new VarSymbol(SYNTHETIC,
|
|
names.fromString("arr" + target.syntheticNameChar()),
|
|
tree.expr.type,
|
|
currentMethodSym);
|
|
JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
|
|
VarSymbol lencache = new VarSymbol(SYNTHETIC,
|
|
names.fromString("len" + target.syntheticNameChar()),
|
|
syms.intType,
|
|
currentMethodSym);
|
|
JCStatement lencachedef = make.
|
|
VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
|
|
VarSymbol index = new VarSymbol(SYNTHETIC,
|
|
names.fromString("i" + target.syntheticNameChar()),
|
|
syms.intType,
|
|
currentMethodSym);
|
|
|
|
JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
|
|
indexdef.init.type = indexdef.type = syms.intType.constType(0);
|
|
|
|
List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
|
|
JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
|
|
|
|
JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
|
|
|
|
Type elemtype = types.elemtype(tree.expr.type);
|
|
JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
|
|
make.Ident(index)).setType(elemtype);
|
|
JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
|
|
tree.var.name,
|
|
tree.var.vartype,
|
|
loopvarinit).setType(tree.var.type);
|
|
loopvardef.sym = tree.var.sym;
|
|
JCBlock body = make.
|
|
Block(0, List.of(loopvardef, tree.body));
|
|
|
|
result = translate(make.
|
|
ForLoop(loopinit,
|
|
cond,
|
|
List.of(step),
|
|
body));
|
|
patchTargets(body, tree, result);
|
|
}
|
|
/** Patch up break and continue targets. */
|
|
private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
|
|
class Patcher extends TreeScanner {
|
|
public void visitBreak(JCBreak tree) {
|
|
if (tree.target == src)
|
|
tree.target = dest;
|
|
}
|
|
public void visitContinue(JCContinue tree) {
|
|
if (tree.target == src)
|
|
tree.target = dest;
|
|
}
|
|
public void visitClassDef(JCClassDecl tree) {}
|
|
}
|
|
new Patcher().scan(body);
|
|
}
|
|
/**
|
|
* A statement of the form
|
|
*
|
|
* <pre>
|
|
* for ( T v : coll ) stmt ;
|
|
* </pre>
|
|
*
|
|
* (where coll implements {@code Iterable<? extends T>}) gets translated to
|
|
*
|
|
* <pre>{@code
|
|
* for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
|
|
* T v = (T) #i.next();
|
|
* stmt;
|
|
* }
|
|
* }</pre>
|
|
*
|
|
* where #i is a freshly named synthetic local variable.
|
|
*/
|
|
private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
|
|
make_at(tree.expr.pos());
|
|
Type iteratorTarget = syms.objectType;
|
|
Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
|
|
syms.iterableType.tsym);
|
|
if (iterableType.getTypeArguments().nonEmpty())
|
|
iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
|
|
Type eType = tree.expr.type;
|
|
while (eType.hasTag(TYPEVAR)) {
|
|
eType = eType.getUpperBound();
|
|
}
|
|
tree.expr.type = types.erasure(eType);
|
|
if (eType.isCompound())
|
|
tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
|
|
Symbol iterator = lookupMethod(tree.expr.pos(),
|
|
names.iterator,
|
|
eType,
|
|
List.<Type>nil());
|
|
VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
|
|
types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)),
|
|
currentMethodSym);
|
|
|
|
JCStatement init = make.
|
|
VarDef(itvar, make.App(make.Select(tree.expr, iterator)
|
|
.setType(types.erasure(iterator.type))));
|
|
|
|
Symbol hasNext = lookupMethod(tree.expr.pos(),
|
|
names.hasNext,
|
|
itvar.type,
|
|
List.<Type>nil());
|
|
JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
|
|
Symbol next = lookupMethod(tree.expr.pos(),
|
|
names.next,
|
|
itvar.type,
|
|
List.<Type>nil());
|
|
JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
|
|
if (tree.var.type.isPrimitive())
|
|
vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
|
|
else
|
|
vardefinit = make.TypeCast(tree.var.type, vardefinit);
|
|
JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
|
|
tree.var.name,
|
|
tree.var.vartype,
|
|
vardefinit).setType(tree.var.type);
|
|
indexDef.sym = tree.var.sym;
|
|
JCBlock body = make.Block(0, List.of(indexDef, tree.body));
|
|
body.endpos = TreeInfo.endPos(tree.body);
|
|
result = translate(make.
|
|
ForLoop(List.of(init),
|
|
cond,
|
|
List.<JCExpressionStatement>nil(),
|
|
body));
|
|
patchTargets(body, tree, result);
|
|
}
|
|
|
|
public void visitVarDef(JCVariableDecl tree) {
|
|
MethodSymbol oldMethodSym = currentMethodSym;
|
|
tree.mods = translate(tree.mods);
|
|
tree.vartype = translate(tree.vartype);
|
|
if (currentMethodSym == null) {
|
|
// A class or instance field initializer.
|
|
currentMethodSym =
|
|
new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
|
|
names.empty, null,
|
|
currentClass);
|
|
}
|
|
if (tree.init != null) tree.init = translate(tree.init, tree.type);
|
|
result = tree;
|
|
currentMethodSym = oldMethodSym;
|
|
}
|
|
|
|
public void visitBlock(JCBlock tree) {
|
|
MethodSymbol oldMethodSym = currentMethodSym;
|
|
if (currentMethodSym == null) {
|
|
// Block is a static or instance initializer.
|
|
currentMethodSym =
|
|
new MethodSymbol(tree.flags | BLOCK,
|
|
names.empty, null,
|
|
currentClass);
|
|
}
|
|
super.visitBlock(tree);
|
|
currentMethodSym = oldMethodSym;
|
|
}
|
|
|
|
public void visitDoLoop(JCDoWhileLoop tree) {
|
|
tree.body = translate(tree.body);
|
|
tree.cond = translate(tree.cond, syms.booleanType);
|
|
result = tree;
|
|
}
|
|
|
|
public void visitWhileLoop(JCWhileLoop tree) {
|
|
tree.cond = translate(tree.cond, syms.booleanType);
|
|
tree.body = translate(tree.body);
|
|
result = tree;
|
|
}
|
|
|
|
public void visitForLoop(JCForLoop tree) {
|
|
tree.init = translate(tree.init);
|
|
if (tree.cond != null)
|
|
tree.cond = translate(tree.cond, syms.booleanType);
|
|
tree.step = translate(tree.step);
|
|
tree.body = translate(tree.body);
|
|
result = tree;
|
|
}
|
|
|
|
public void visitReturn(JCReturn tree) {
|
|
if (tree.expr != null)
|
|
tree.expr = translate(tree.expr,
|
|
types.erasure(currentMethodDef
|
|
.restype.type));
|
|
result = tree;
|
|
}
|
|
|
|
public void visitSwitch(JCSwitch tree) {
|
|
Type selsuper = types.supertype(tree.selector.type);
|
|
boolean enumSwitch = selsuper != null &&
|
|
(tree.selector.type.tsym.flags() & ENUM) != 0;
|
|
boolean stringSwitch = selsuper != null &&
|
|
types.isSameType(tree.selector.type, syms.stringType);
|
|
Type target = enumSwitch ? tree.selector.type :
|
|
(stringSwitch? syms.stringType : syms.intType);
|
|
tree.selector = translate(tree.selector, target);
|
|
tree.cases = translateCases(tree.cases);
|
|
if (enumSwitch) {
|
|
result = visitEnumSwitch(tree);
|
|
} else if (stringSwitch) {
|
|
result = visitStringSwitch(tree);
|
|
} else {
|
|
result = tree;
|
|
}
|
|
}
|
|
|
|
public JCTree visitEnumSwitch(JCSwitch tree) {
|
|
TypeSymbol enumSym = tree.selector.type.tsym;
|
|
EnumMapping map = mapForEnum(tree.pos(), enumSym);
|
|
make_at(tree.pos());
|
|
Symbol ordinalMethod = lookupMethod(tree.pos(),
|
|
names.ordinal,
|
|
tree.selector.type,
|
|
List.<Type>nil());
|
|
JCArrayAccess selector = make.Indexed(map.mapVar,
|
|
make.App(make.Select(tree.selector,
|
|
ordinalMethod)));
|
|
ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
|
|
for (JCCase c : tree.cases) {
|
|
if (c.pat != null) {
|
|
VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
|
|
JCLiteral pat = map.forConstant(label);
|
|
cases.append(make.Case(pat, c.stats));
|
|
} else {
|
|
cases.append(c);
|
|
}
|
|
}
|
|
JCSwitch enumSwitch = make.Switch(selector, cases.toList());
|
|
patchTargets(enumSwitch, tree, enumSwitch);
|
|
return enumSwitch;
|
|
}
|
|
|
|
public JCTree visitStringSwitch(JCSwitch tree) {
|
|
List<JCCase> caseList = tree.getCases();
|
|
int alternatives = caseList.size();
|
|
|
|
if (alternatives == 0) { // Strange but legal possibility
|
|
return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
|
|
} else {
|
|
/*
|
|
* The general approach used is to translate a single
|
|
* string switch statement into a series of two chained
|
|
* switch statements: the first a synthesized statement
|
|
* switching on the argument string's hash value and
|
|
* computing a string's position in the list of original
|
|
* case labels, if any, followed by a second switch on the
|
|
* computed integer value. The second switch has the same
|
|
* code structure as the original string switch statement
|
|
* except that the string case labels are replaced with
|
|
* positional integer constants starting at 0.
|
|
*
|
|
* The first switch statement can be thought of as an
|
|
* inlined map from strings to their position in the case
|
|
* label list. An alternate implementation would use an
|
|
* actual Map for this purpose, as done for enum switches.
|
|
*
|
|
* With some additional effort, it would be possible to
|
|
* use a single switch statement on the hash code of the
|
|
* argument, but care would need to be taken to preserve
|
|
* the proper control flow in the presence of hash
|
|
* collisions and other complications, such as
|
|
* fallthroughs. Switch statements with one or two
|
|
* alternatives could also be specially translated into
|
|
* if-then statements to omit the computation of the hash
|
|
* code.
|
|
*
|
|
* The generated code assumes that the hashing algorithm
|
|
* of String is the same in the compilation environment as
|
|
* in the environment the code will run in. The string
|
|
* hashing algorithm in the SE JDK has been unchanged
|
|
* since at least JDK 1.2. Since the algorithm has been
|
|
* specified since that release as well, it is very
|
|
* unlikely to be changed in the future.
|
|
*
|
|
* Different hashing algorithms, such as the length of the
|
|
* strings or a perfect hashing algorithm over the
|
|
* particular set of case labels, could potentially be
|
|
* used instead of String.hashCode.
|
|
*/
|
|
|
|
ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
|
|
|
|
// Map from String case labels to their original position in
|
|
// the list of case labels.
|
|
Map<String, Integer> caseLabelToPosition =
|
|
new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
|
|
|
|
// Map of hash codes to the string case labels having that hashCode.
|
|
Map<Integer, Set<String>> hashToString =
|
|
new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
|
|
|
|
int casePosition = 0;
|
|
for(JCCase oneCase : caseList) {
|
|
JCExpression expression = oneCase.getExpression();
|
|
|
|
if (expression != null) { // expression for a "default" case is null
|
|
String labelExpr = (String) expression.type.constValue();
|
|
Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
|
|
Assert.checkNull(mapping);
|
|
int hashCode = labelExpr.hashCode();
|
|
|
|
Set<String> stringSet = hashToString.get(hashCode);
|
|
if (stringSet == null) {
|
|
stringSet = new LinkedHashSet<String>(1, 1.0f);
|
|
stringSet.add(labelExpr);
|
|
hashToString.put(hashCode, stringSet);
|
|
} else {
|
|
boolean added = stringSet.add(labelExpr);
|
|
Assert.check(added);
|
|
}
|
|
}
|
|
casePosition++;
|
|
}
|
|
|
|
// Synthesize a switch statement that has the effect of
|
|
// mapping from a string to the integer position of that
|
|
// string in the list of case labels. This is done by
|
|
// switching on the hashCode of the string followed by an
|
|
// if-then-else chain comparing the input for equality
|
|
// with all the case labels having that hash value.
|
|
|
|
/*
|
|
* s$ = top of stack;
|
|
* tmp$ = -1;
|
|
* switch($s.hashCode()) {
|
|
* case caseLabel.hashCode:
|
|
* if (s$.equals("caseLabel_1")
|
|
* tmp$ = caseLabelToPosition("caseLabel_1");
|
|
* else if (s$.equals("caseLabel_2"))
|
|
* tmp$ = caseLabelToPosition("caseLabel_2");
|
|
* ...
|
|
* break;
|
|
* ...
|
|
* }
|
|
*/
|
|
|
|
VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
|
|
names.fromString("s" + tree.pos + target.syntheticNameChar()),
|
|
syms.stringType,
|
|
currentMethodSym);
|
|
stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
|
|
|
|
VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
|
|
names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
|
|
syms.intType,
|
|
currentMethodSym);
|
|
JCVariableDecl dollar_tmp_def =
|
|
(JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
|
|
dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
|
|
stmtList.append(dollar_tmp_def);
|
|
ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
|
|
// hashCode will trigger nullcheck on original switch expression
|
|
JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
|
|
names.hashCode,
|
|
List.<JCExpression>nil()).setType(syms.intType);
|
|
JCSwitch switch1 = make.Switch(hashCodeCall,
|
|
caseBuffer.toList());
|
|
for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
|
|
int hashCode = entry.getKey();
|
|
Set<String> stringsWithHashCode = entry.getValue();
|
|
Assert.check(stringsWithHashCode.size() >= 1);
|
|
|
|
JCStatement elsepart = null;
|
|
for(String caseLabel : stringsWithHashCode ) {
|
|
JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
|
|
names.equals,
|
|
List.<JCExpression>of(make.Literal(caseLabel)));
|
|
elsepart = make.If(stringEqualsCall,
|
|
make.Exec(make.Assign(make.Ident(dollar_tmp),
|
|
make.Literal(caseLabelToPosition.get(caseLabel))).
|
|
setType(dollar_tmp.type)),
|
|
elsepart);
|
|
}
|
|
|
|
ListBuffer<JCStatement> lb = new ListBuffer<>();
|
|
JCBreak breakStmt = make.Break(null);
|
|
breakStmt.target = switch1;
|
|
lb.append(elsepart).append(breakStmt);
|
|
|
|
caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
|
|
}
|
|
|
|
switch1.cases = caseBuffer.toList();
|
|
stmtList.append(switch1);
|
|
|
|
// Make isomorphic switch tree replacing string labels
|
|
// with corresponding integer ones from the label to
|
|
// position map.
|
|
|
|
ListBuffer<JCCase> lb = new ListBuffer<>();
|
|
JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
|
|
for(JCCase oneCase : caseList ) {
|
|
// Rewire up old unlabeled break statements to the
|
|
// replacement switch being created.
|
|
patchTargets(oneCase, tree, switch2);
|
|
|
|
boolean isDefault = (oneCase.getExpression() == null);
|
|
JCExpression caseExpr;
|
|
if (isDefault)
|
|
caseExpr = null;
|
|
else {
|
|
caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
|
|
getExpression()).
|
|
type.constValue()));
|
|
}
|
|
|
|
lb.append(make.Case(caseExpr,
|
|
oneCase.getStatements()));
|
|
}
|
|
|
|
switch2.cases = lb.toList();
|
|
stmtList.append(switch2);
|
|
|
|
return make.Block(0L, stmtList.toList());
|
|
}
|
|
}
|
|
|
|
public void visitNewArray(JCNewArray tree) {
|
|
tree.elemtype = translate(tree.elemtype);
|
|
for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
|
|
if (t.head != null) t.head = translate(t.head, syms.intType);
|
|
tree.elems = translate(tree.elems, types.elemtype(tree.type));
|
|
result = tree;
|
|
}
|
|
|
|
public void visitSelect(JCFieldAccess tree) {
|
|
// need to special case-access of the form C.super.x
|
|
// these will always need an access method, unless C
|
|
// is a default interface subclassed by the current class.
|
|
boolean qualifiedSuperAccess =
|
|
tree.selected.hasTag(SELECT) &&
|
|
TreeInfo.name(tree.selected) == names._super &&
|
|
!types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
|
|
tree.selected = translate(tree.selected);
|
|
if (tree.name == names._class) {
|
|
result = classOf(tree.selected);
|
|
}
|
|
else if (tree.name == names._super &&
|
|
types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
|
|
//default super call!! Not a classic qualified super call
|
|
TypeSymbol supSym = tree.selected.type.tsym;
|
|
Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
|
|
result = tree;
|
|
}
|
|
else if (tree.name == names._this || tree.name == names._super) {
|
|
result = makeThis(tree.pos(), tree.selected.type.tsym);
|
|
}
|
|
else
|
|
result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
|
|
}
|
|
|
|
public void visitLetExpr(LetExpr tree) {
|
|
tree.defs = translateVarDefs(tree.defs);
|
|
tree.expr = translate(tree.expr, tree.type);
|
|
result = tree;
|
|
}
|
|
|
|
// There ought to be nothing to rewrite here;
|
|
// we don't generate code.
|
|
public void visitAnnotation(JCAnnotation tree) {
|
|
result = tree;
|
|
}
|
|
|
|
@Override
|
|
public void visitTry(JCTry tree) {
|
|
if (tree.resources.nonEmpty()) {
|
|
result = makeTwrTry(tree);
|
|
return;
|
|
}
|
|
|
|
boolean hasBody = tree.body.getStatements().nonEmpty();
|
|
boolean hasCatchers = tree.catchers.nonEmpty();
|
|
boolean hasFinally = tree.finalizer != null &&
|
|
tree.finalizer.getStatements().nonEmpty();
|
|
|
|
if (!hasCatchers && !hasFinally) {
|
|
result = translate(tree.body);
|
|
return;
|
|
}
|
|
|
|
if (!hasBody) {
|
|
if (hasFinally) {
|
|
result = translate(tree.finalizer);
|
|
} else {
|
|
result = translate(tree.body);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// no optimizations possible
|
|
super.visitTry(tree);
|
|
}
|
|
|
|
/**************************************************************************
|
|
* main method
|
|
*************************************************************************/
|
|
|
|
/** Translate a toplevel class and return a list consisting of
|
|
* the translated class and translated versions of all inner classes.
|
|
* @param env The attribution environment current at the class definition.
|
|
* We need this for resolving some additional symbols.
|
|
* @param cdef The tree representing the class definition.
|
|
*/
|
|
public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
|
|
ListBuffer<JCTree> translated = null;
|
|
try {
|
|
attrEnv = env;
|
|
this.make = make;
|
|
endPosTable = env.toplevel.endPositions;
|
|
currentClass = null;
|
|
currentMethodDef = null;
|
|
outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
|
|
outermostMemberDef = null;
|
|
this.translated = new ListBuffer<JCTree>();
|
|
classdefs = new HashMap<ClassSymbol,JCClassDecl>();
|
|
actualSymbols = new HashMap<Symbol,Symbol>();
|
|
freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
|
|
proxies = new Scope(syms.noSymbol);
|
|
twrVars = new Scope(syms.noSymbol);
|
|
outerThisStack = List.nil();
|
|
accessNums = new HashMap<Symbol,Integer>();
|
|
accessSyms = new HashMap<Symbol,MethodSymbol[]>();
|
|
accessConstrs = new HashMap<Symbol,MethodSymbol>();
|
|
accessConstrTags = List.nil();
|
|
accessed = new ListBuffer<Symbol>();
|
|
translate(cdef, (JCExpression)null);
|
|
for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
|
|
makeAccessible(l.head);
|
|
for (EnumMapping map : enumSwitchMap.values())
|
|
map.translate();
|
|
checkConflicts(this.translated.toList());
|
|
checkAccessConstructorTags();
|
|
translated = this.translated;
|
|
} finally {
|
|
// note that recursive invocations of this method fail hard
|
|
attrEnv = null;
|
|
this.make = null;
|
|
endPosTable = null;
|
|
currentClass = null;
|
|
currentMethodDef = null;
|
|
outermostClassDef = null;
|
|
outermostMemberDef = null;
|
|
this.translated = null;
|
|
classdefs = null;
|
|
actualSymbols = null;
|
|
freevarCache = null;
|
|
proxies = null;
|
|
outerThisStack = null;
|
|
accessNums = null;
|
|
accessSyms = null;
|
|
accessConstrs = null;
|
|
accessConstrTags = null;
|
|
accessed = null;
|
|
enumSwitchMap.clear();
|
|
assertionsDisabledClassCache = null;
|
|
}
|
|
return translated.toList();
|
|
}
|
|
}
|