4401 lines
185 KiB
Java
4401 lines
185 KiB
Java
/*
|
|
* Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package com.sun.tools.javac.comp;
|
|
|
|
import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
|
|
import com.sun.tools.javac.api.Formattable.LocalizedString;
|
|
import com.sun.tools.javac.code.*;
|
|
import com.sun.tools.javac.code.Symbol.*;
|
|
import com.sun.tools.javac.code.Type.*;
|
|
import com.sun.tools.javac.comp.Attr.ResultInfo;
|
|
import com.sun.tools.javac.comp.Check.CheckContext;
|
|
import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
|
|
import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
|
|
import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
|
|
import com.sun.tools.javac.comp.Infer.InferenceContext;
|
|
import com.sun.tools.javac.comp.Infer.FreeTypeListener;
|
|
import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
|
|
import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
|
|
import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
|
|
import com.sun.tools.javac.jvm.*;
|
|
import com.sun.tools.javac.main.Option;
|
|
import com.sun.tools.javac.tree.*;
|
|
import com.sun.tools.javac.tree.JCTree.*;
|
|
import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
|
|
import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
|
|
import com.sun.tools.javac.util.*;
|
|
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
|
|
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
|
|
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
|
|
|
|
import java.util.Arrays;
|
|
import java.util.Collection;
|
|
import java.util.EnumMap;
|
|
import java.util.EnumSet;
|
|
import java.util.Iterator;
|
|
import java.util.LinkedHashMap;
|
|
import java.util.LinkedHashSet;
|
|
import java.util.Map;
|
|
|
|
import javax.lang.model.element.ElementVisitor;
|
|
|
|
import static com.sun.tools.javac.code.Flags.*;
|
|
import static com.sun.tools.javac.code.Flags.BLOCK;
|
|
import static com.sun.tools.javac.code.Kinds.*;
|
|
import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
|
|
import static com.sun.tools.javac.code.TypeTag.*;
|
|
import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
|
|
import static com.sun.tools.javac.tree.JCTree.Tag.*;
|
|
|
|
/** Helper class for name resolution, used mostly by the attribution phase.
|
|
*
|
|
* <p><b>This is NOT part of any supported API.
|
|
* If you write code that depends on this, you do so at your own risk.
|
|
* This code and its internal interfaces are subject to change or
|
|
* deletion without notice.</b>
|
|
*/
|
|
public class Resolve {
|
|
protected static final Context.Key<Resolve> resolveKey =
|
|
new Context.Key<Resolve>();
|
|
|
|
Names names;
|
|
Log log;
|
|
Symtab syms;
|
|
Attr attr;
|
|
DeferredAttr deferredAttr;
|
|
Check chk;
|
|
Infer infer;
|
|
ClassReader reader;
|
|
TreeInfo treeinfo;
|
|
Types types;
|
|
JCDiagnostic.Factory diags;
|
|
public final boolean boxingEnabled;
|
|
public final boolean varargsEnabled;
|
|
public final boolean allowMethodHandles;
|
|
public final boolean allowFunctionalInterfaceMostSpecific;
|
|
public final boolean checkVarargsAccessAfterResolution;
|
|
private final boolean debugResolve;
|
|
private final boolean compactMethodDiags;
|
|
final EnumSet<VerboseResolutionMode> verboseResolutionMode;
|
|
|
|
Scope polymorphicSignatureScope;
|
|
|
|
protected Resolve(Context context) {
|
|
context.put(resolveKey, this);
|
|
syms = Symtab.instance(context);
|
|
|
|
varNotFound = new
|
|
SymbolNotFoundError(ABSENT_VAR);
|
|
methodNotFound = new
|
|
SymbolNotFoundError(ABSENT_MTH);
|
|
methodWithCorrectStaticnessNotFound = new
|
|
SymbolNotFoundError(WRONG_STATICNESS,
|
|
"method found has incorrect staticness");
|
|
typeNotFound = new
|
|
SymbolNotFoundError(ABSENT_TYP);
|
|
|
|
names = Names.instance(context);
|
|
log = Log.instance(context);
|
|
attr = Attr.instance(context);
|
|
deferredAttr = DeferredAttr.instance(context);
|
|
chk = Check.instance(context);
|
|
infer = Infer.instance(context);
|
|
reader = ClassReader.instance(context);
|
|
treeinfo = TreeInfo.instance(context);
|
|
types = Types.instance(context);
|
|
diags = JCDiagnostic.Factory.instance(context);
|
|
Source source = Source.instance(context);
|
|
boxingEnabled = source.allowBoxing();
|
|
varargsEnabled = source.allowVarargs();
|
|
Options options = Options.instance(context);
|
|
debugResolve = options.isSet("debugresolve");
|
|
compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
|
|
options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
|
|
verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
|
|
Target target = Target.instance(context);
|
|
allowMethodHandles = target.hasMethodHandles();
|
|
allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
|
|
checkVarargsAccessAfterResolution =
|
|
source.allowPostApplicabilityVarargsAccessCheck();
|
|
polymorphicSignatureScope = new Scope(syms.noSymbol);
|
|
|
|
inapplicableMethodException = new InapplicableMethodException(diags);
|
|
}
|
|
|
|
/** error symbols, which are returned when resolution fails
|
|
*/
|
|
private final SymbolNotFoundError varNotFound;
|
|
private final SymbolNotFoundError methodNotFound;
|
|
private final SymbolNotFoundError methodWithCorrectStaticnessNotFound;
|
|
private final SymbolNotFoundError typeNotFound;
|
|
|
|
public static Resolve instance(Context context) {
|
|
Resolve instance = context.get(resolveKey);
|
|
if (instance == null)
|
|
instance = new Resolve(context);
|
|
return instance;
|
|
}
|
|
|
|
// <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
|
|
enum VerboseResolutionMode {
|
|
SUCCESS("success"),
|
|
FAILURE("failure"),
|
|
APPLICABLE("applicable"),
|
|
INAPPLICABLE("inapplicable"),
|
|
DEFERRED_INST("deferred-inference"),
|
|
PREDEF("predef"),
|
|
OBJECT_INIT("object-init"),
|
|
INTERNAL("internal");
|
|
|
|
final String opt;
|
|
|
|
private VerboseResolutionMode(String opt) {
|
|
this.opt = opt;
|
|
}
|
|
|
|
static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
|
|
String s = opts.get("verboseResolution");
|
|
EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
|
|
if (s == null) return res;
|
|
if (s.contains("all")) {
|
|
res = EnumSet.allOf(VerboseResolutionMode.class);
|
|
}
|
|
Collection<String> args = Arrays.asList(s.split(","));
|
|
for (VerboseResolutionMode mode : values()) {
|
|
if (args.contains(mode.opt)) {
|
|
res.add(mode);
|
|
} else if (args.contains("-" + mode.opt)) {
|
|
res.remove(mode);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
|
|
void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
|
|
List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
|
|
boolean success = bestSoFar.kind < ERRONEOUS;
|
|
|
|
if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
|
|
return;
|
|
} else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
|
|
return;
|
|
}
|
|
|
|
if (bestSoFar.name == names.init &&
|
|
bestSoFar.owner == syms.objectType.tsym &&
|
|
!verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
|
|
return; //skip diags for Object constructor resolution
|
|
} else if (site == syms.predefClass.type &&
|
|
!verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
|
|
return; //skip spurious diags for predef symbols (i.e. operators)
|
|
} else if (currentResolutionContext.internalResolution &&
|
|
!verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
|
|
return;
|
|
}
|
|
|
|
int pos = 0;
|
|
int mostSpecificPos = -1;
|
|
ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
|
|
for (Candidate c : currentResolutionContext.candidates) {
|
|
if (currentResolutionContext.step != c.step ||
|
|
(c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
|
|
(!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
|
|
continue;
|
|
} else {
|
|
subDiags.append(c.isApplicable() ?
|
|
getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
|
|
getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
|
|
if (c.sym == bestSoFar)
|
|
mostSpecificPos = pos;
|
|
pos++;
|
|
}
|
|
}
|
|
String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
|
|
List<Type> argtypes2 = Type.map(argtypes,
|
|
deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
|
|
JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
|
|
site.tsym, mostSpecificPos, currentResolutionContext.step,
|
|
methodArguments(argtypes2),
|
|
methodArguments(typeargtypes));
|
|
JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
|
|
log.report(d);
|
|
}
|
|
|
|
JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
|
|
JCDiagnostic subDiag = null;
|
|
if (sym.type.hasTag(FORALL)) {
|
|
subDiag = diags.fragment("partial.inst.sig", inst);
|
|
}
|
|
|
|
String key = subDiag == null ?
|
|
"applicable.method.found" :
|
|
"applicable.method.found.1";
|
|
|
|
return diags.fragment(key, pos, sym, subDiag);
|
|
}
|
|
|
|
JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
|
|
return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
|
|
}
|
|
// </editor-fold>
|
|
|
|
/* ************************************************************************
|
|
* Identifier resolution
|
|
*************************************************************************/
|
|
|
|
/** An environment is "static" if its static level is greater than
|
|
* the one of its outer environment
|
|
*/
|
|
protected static boolean isStatic(Env<AttrContext> env) {
|
|
return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
|
|
}
|
|
|
|
/** An environment is an "initializer" if it is a constructor or
|
|
* an instance initializer.
|
|
*/
|
|
static boolean isInitializer(Env<AttrContext> env) {
|
|
Symbol owner = env.info.scope.owner;
|
|
return owner.isConstructor() ||
|
|
owner.owner.kind == TYP &&
|
|
(owner.kind == VAR ||
|
|
owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
|
|
(owner.flags() & STATIC) == 0;
|
|
}
|
|
|
|
/** Is class accessible in given evironment?
|
|
* @param env The current environment.
|
|
* @param c The class whose accessibility is checked.
|
|
*/
|
|
public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
|
|
return isAccessible(env, c, false);
|
|
}
|
|
|
|
public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
|
|
boolean isAccessible = false;
|
|
switch ((short)(c.flags() & AccessFlags)) {
|
|
case PRIVATE:
|
|
isAccessible =
|
|
env.enclClass.sym.outermostClass() ==
|
|
c.owner.outermostClass();
|
|
break;
|
|
case 0:
|
|
isAccessible =
|
|
env.toplevel.packge == c.owner // fast special case
|
|
||
|
|
env.toplevel.packge == c.packge()
|
|
||
|
|
// Hack: this case is added since synthesized default constructors
|
|
// of anonymous classes should be allowed to access
|
|
// classes which would be inaccessible otherwise.
|
|
env.enclMethod != null &&
|
|
(env.enclMethod.mods.flags & ANONCONSTR) != 0;
|
|
break;
|
|
default: // error recovery
|
|
case PUBLIC:
|
|
isAccessible = true;
|
|
break;
|
|
case PROTECTED:
|
|
isAccessible =
|
|
env.toplevel.packge == c.owner // fast special case
|
|
||
|
|
env.toplevel.packge == c.packge()
|
|
||
|
|
isInnerSubClass(env.enclClass.sym, c.owner);
|
|
break;
|
|
}
|
|
return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
|
|
isAccessible :
|
|
isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
|
|
}
|
|
//where
|
|
/** Is given class a subclass of given base class, or an inner class
|
|
* of a subclass?
|
|
* Return null if no such class exists.
|
|
* @param c The class which is the subclass or is contained in it.
|
|
* @param base The base class
|
|
*/
|
|
private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
|
|
while (c != null && !c.isSubClass(base, types)) {
|
|
c = c.owner.enclClass();
|
|
}
|
|
return c != null;
|
|
}
|
|
|
|
boolean isAccessible(Env<AttrContext> env, Type t) {
|
|
return isAccessible(env, t, false);
|
|
}
|
|
|
|
boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
|
|
return (t.hasTag(ARRAY))
|
|
? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
|
|
: isAccessible(env, t.tsym, checkInner);
|
|
}
|
|
|
|
/** Is symbol accessible as a member of given type in given environment?
|
|
* @param env The current environment.
|
|
* @param site The type of which the tested symbol is regarded
|
|
* as a member.
|
|
* @param sym The symbol.
|
|
*/
|
|
public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
|
|
return isAccessible(env, site, sym, false);
|
|
}
|
|
public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
|
|
if (sym.name == names.init && sym.owner != site.tsym) return false;
|
|
switch ((short)(sym.flags() & AccessFlags)) {
|
|
case PRIVATE:
|
|
return
|
|
(env.enclClass.sym == sym.owner // fast special case
|
|
||
|
|
env.enclClass.sym.outermostClass() ==
|
|
sym.owner.outermostClass())
|
|
&&
|
|
sym.isInheritedIn(site.tsym, types);
|
|
case 0:
|
|
return
|
|
(env.toplevel.packge == sym.owner.owner // fast special case
|
|
||
|
|
env.toplevel.packge == sym.packge())
|
|
&&
|
|
isAccessible(env, site, checkInner)
|
|
&&
|
|
sym.isInheritedIn(site.tsym, types)
|
|
&&
|
|
notOverriddenIn(site, sym);
|
|
case PROTECTED:
|
|
return
|
|
(env.toplevel.packge == sym.owner.owner // fast special case
|
|
||
|
|
env.toplevel.packge == sym.packge()
|
|
||
|
|
isProtectedAccessible(sym, env.enclClass.sym, site)
|
|
||
|
|
// OK to select instance method or field from 'super' or type name
|
|
// (but type names should be disallowed elsewhere!)
|
|
env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
|
|
&&
|
|
isAccessible(env, site, checkInner)
|
|
&&
|
|
notOverriddenIn(site, sym);
|
|
default: // this case includes erroneous combinations as well
|
|
return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
|
|
}
|
|
}
|
|
//where
|
|
/* `sym' is accessible only if not overridden by
|
|
* another symbol which is a member of `site'
|
|
* (because, if it is overridden, `sym' is not strictly
|
|
* speaking a member of `site'). A polymorphic signature method
|
|
* cannot be overridden (e.g. MH.invokeExact(Object[])).
|
|
*/
|
|
private boolean notOverriddenIn(Type site, Symbol sym) {
|
|
if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
|
|
return true;
|
|
else {
|
|
Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
|
|
return (s2 == null || s2 == sym || sym.owner == s2.owner ||
|
|
!types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
|
|
}
|
|
}
|
|
//where
|
|
/** Is given protected symbol accessible if it is selected from given site
|
|
* and the selection takes place in given class?
|
|
* @param sym The symbol with protected access
|
|
* @param c The class where the access takes place
|
|
* @site The type of the qualifier
|
|
*/
|
|
private
|
|
boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
|
|
Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
|
|
while (c != null &&
|
|
!(c.isSubClass(sym.owner, types) &&
|
|
(c.flags() & INTERFACE) == 0 &&
|
|
// In JLS 2e 6.6.2.1, the subclass restriction applies
|
|
// only to instance fields and methods -- types are excluded
|
|
// regardless of whether they are declared 'static' or not.
|
|
((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
|
|
c = c.owner.enclClass();
|
|
return c != null;
|
|
}
|
|
|
|
/**
|
|
* Performs a recursive scan of a type looking for accessibility problems
|
|
* from current attribution environment
|
|
*/
|
|
void checkAccessibleType(Env<AttrContext> env, Type t) {
|
|
accessibilityChecker.visit(t, env);
|
|
}
|
|
|
|
/**
|
|
* Accessibility type-visitor
|
|
*/
|
|
Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
|
|
new Types.SimpleVisitor<Void, Env<AttrContext>>() {
|
|
|
|
void visit(List<Type> ts, Env<AttrContext> env) {
|
|
for (Type t : ts) {
|
|
visit(t, env);
|
|
}
|
|
}
|
|
|
|
public Void visitType(Type t, Env<AttrContext> env) {
|
|
return null;
|
|
}
|
|
|
|
@Override
|
|
public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
|
|
visit(t.elemtype, env);
|
|
return null;
|
|
}
|
|
|
|
@Override
|
|
public Void visitClassType(ClassType t, Env<AttrContext> env) {
|
|
visit(t.getTypeArguments(), env);
|
|
if (!isAccessible(env, t, true)) {
|
|
accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
@Override
|
|
public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
|
|
visit(t.type, env);
|
|
return null;
|
|
}
|
|
|
|
@Override
|
|
public Void visitMethodType(MethodType t, Env<AttrContext> env) {
|
|
visit(t.getParameterTypes(), env);
|
|
visit(t.getReturnType(), env);
|
|
visit(t.getThrownTypes(), env);
|
|
return null;
|
|
}
|
|
};
|
|
|
|
/** Try to instantiate the type of a method so that it fits
|
|
* given type arguments and argument types. If successful, return
|
|
* the method's instantiated type, else return null.
|
|
* The instantiation will take into account an additional leading
|
|
* formal parameter if the method is an instance method seen as a member
|
|
* of an under determined site. In this case, we treat site as an additional
|
|
* parameter and the parameters of the class containing the method as
|
|
* additional type variables that get instantiated.
|
|
*
|
|
* @param env The current environment
|
|
* @param site The type of which the method is a member.
|
|
* @param m The method symbol.
|
|
* @param argtypes The invocation's given value arguments.
|
|
* @param typeargtypes The invocation's given type arguments.
|
|
* @param allowBoxing Allow boxing conversions of arguments.
|
|
* @param useVarargs Box trailing arguments into an array for varargs.
|
|
*/
|
|
Type rawInstantiate(Env<AttrContext> env,
|
|
Type site,
|
|
Symbol m,
|
|
ResultInfo resultInfo,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
boolean allowBoxing,
|
|
boolean useVarargs,
|
|
Warner warn) throws Infer.InferenceException {
|
|
|
|
Type mt = types.memberType(site, m);
|
|
// tvars is the list of formal type variables for which type arguments
|
|
// need to inferred.
|
|
List<Type> tvars = List.nil();
|
|
if (typeargtypes == null) typeargtypes = List.nil();
|
|
if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
|
|
// This is not a polymorphic method, but typeargs are supplied
|
|
// which is fine, see JLS 15.12.2.1
|
|
} else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
|
|
ForAll pmt = (ForAll) mt;
|
|
if (typeargtypes.length() != pmt.tvars.length())
|
|
throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
|
|
// Check type arguments are within bounds
|
|
List<Type> formals = pmt.tvars;
|
|
List<Type> actuals = typeargtypes;
|
|
while (formals.nonEmpty() && actuals.nonEmpty()) {
|
|
List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
|
|
pmt.tvars, typeargtypes);
|
|
for (; bounds.nonEmpty(); bounds = bounds.tail)
|
|
if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
|
|
throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
|
|
formals = formals.tail;
|
|
actuals = actuals.tail;
|
|
}
|
|
mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
|
|
} else if (mt.hasTag(FORALL)) {
|
|
ForAll pmt = (ForAll) mt;
|
|
List<Type> tvars1 = types.newInstances(pmt.tvars);
|
|
tvars = tvars.appendList(tvars1);
|
|
mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
|
|
}
|
|
|
|
// find out whether we need to go the slow route via infer
|
|
boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
|
|
for (List<Type> l = argtypes;
|
|
l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
|
|
l = l.tail) {
|
|
if (l.head.hasTag(FORALL)) instNeeded = true;
|
|
}
|
|
|
|
if (instNeeded)
|
|
return infer.instantiateMethod(env,
|
|
tvars,
|
|
(MethodType)mt,
|
|
resultInfo,
|
|
(MethodSymbol)m,
|
|
argtypes,
|
|
allowBoxing,
|
|
useVarargs,
|
|
currentResolutionContext,
|
|
warn);
|
|
|
|
DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
|
|
currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
|
|
argtypes, mt.getParameterTypes(), warn);
|
|
dc.complete();
|
|
return mt;
|
|
}
|
|
|
|
Type checkMethod(Env<AttrContext> env,
|
|
Type site,
|
|
Symbol m,
|
|
ResultInfo resultInfo,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
Warner warn) {
|
|
MethodResolutionContext prevContext = currentResolutionContext;
|
|
try {
|
|
currentResolutionContext = new MethodResolutionContext();
|
|
currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
|
|
if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
|
|
//method/constructor references need special check class
|
|
//to handle inference variables in 'argtypes' (might happen
|
|
//during an unsticking round)
|
|
currentResolutionContext.methodCheck =
|
|
new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
|
|
}
|
|
MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
|
|
return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
|
|
step.isBoxingRequired(), step.isVarargsRequired(), warn);
|
|
}
|
|
finally {
|
|
currentResolutionContext = prevContext;
|
|
}
|
|
}
|
|
|
|
/** Same but returns null instead throwing a NoInstanceException
|
|
*/
|
|
Type instantiate(Env<AttrContext> env,
|
|
Type site,
|
|
Symbol m,
|
|
ResultInfo resultInfo,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
boolean allowBoxing,
|
|
boolean useVarargs,
|
|
Warner warn) {
|
|
try {
|
|
return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
|
|
allowBoxing, useVarargs, warn);
|
|
} catch (InapplicableMethodException ex) {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This interface defines an entry point that should be used to perform a
|
|
* method check. A method check usually consist in determining as to whether
|
|
* a set of types (actuals) is compatible with another set of types (formals).
|
|
* Since the notion of compatibility can vary depending on the circumstances,
|
|
* this interfaces allows to easily add new pluggable method check routines.
|
|
*/
|
|
interface MethodCheck {
|
|
/**
|
|
* Main method check routine. A method check usually consist in determining
|
|
* as to whether a set of types (actuals) is compatible with another set of
|
|
* types (formals). If an incompatibility is found, an unchecked exception
|
|
* is assumed to be thrown.
|
|
*/
|
|
void argumentsAcceptable(Env<AttrContext> env,
|
|
DeferredAttrContext deferredAttrContext,
|
|
List<Type> argtypes,
|
|
List<Type> formals,
|
|
Warner warn);
|
|
|
|
/**
|
|
* Retrieve the method check object that will be used during a
|
|
* most specific check.
|
|
*/
|
|
MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
|
|
}
|
|
|
|
/**
|
|
* Helper enum defining all method check diagnostics (used by resolveMethodCheck).
|
|
*/
|
|
enum MethodCheckDiag {
|
|
/**
|
|
* Actuals and formals differs in length.
|
|
*/
|
|
ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
|
|
/**
|
|
* An actual is incompatible with a formal.
|
|
*/
|
|
ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
|
|
/**
|
|
* An actual is incompatible with the varargs element type.
|
|
*/
|
|
VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
|
|
/**
|
|
* The varargs element type is inaccessible.
|
|
*/
|
|
INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
|
|
|
|
final String basicKey;
|
|
final String inferKey;
|
|
|
|
MethodCheckDiag(String basicKey, String inferKey) {
|
|
this.basicKey = basicKey;
|
|
this.inferKey = inferKey;
|
|
}
|
|
|
|
String regex() {
|
|
return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Dummy method check object. All methods are deemed applicable, regardless
|
|
* of their formal parameter types.
|
|
*/
|
|
MethodCheck nilMethodCheck = new MethodCheck() {
|
|
public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
|
|
//do nothing - method always applicable regardless of actuals
|
|
}
|
|
|
|
public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
|
|
return this;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Base class for 'real' method checks. The class defines the logic for
|
|
* iterating through formals and actuals and provides and entry point
|
|
* that can be used by subclasses in order to define the actual check logic.
|
|
*/
|
|
abstract class AbstractMethodCheck implements MethodCheck {
|
|
@Override
|
|
public void argumentsAcceptable(final Env<AttrContext> env,
|
|
DeferredAttrContext deferredAttrContext,
|
|
List<Type> argtypes,
|
|
List<Type> formals,
|
|
Warner warn) {
|
|
//should we expand formals?
|
|
boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
|
|
JCTree callTree = treeForDiagnostics(env);
|
|
List<JCExpression> trees = TreeInfo.args(callTree);
|
|
|
|
//inference context used during this method check
|
|
InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
|
|
|
|
Type varargsFormal = useVarargs ? formals.last() : null;
|
|
|
|
if (varargsFormal == null &&
|
|
argtypes.size() != formals.size()) {
|
|
reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
|
|
}
|
|
|
|
while (argtypes.nonEmpty() && formals.head != varargsFormal) {
|
|
DiagnosticPosition pos = trees != null ? trees.head : null;
|
|
checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
|
|
argtypes = argtypes.tail;
|
|
formals = formals.tail;
|
|
trees = trees != null ? trees.tail : trees;
|
|
}
|
|
|
|
if (formals.head != varargsFormal) {
|
|
reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
|
|
}
|
|
|
|
if (useVarargs) {
|
|
//note: if applicability check is triggered by most specific test,
|
|
//the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
|
|
final Type elt = types.elemtype(varargsFormal);
|
|
while (argtypes.nonEmpty()) {
|
|
DiagnosticPosition pos = trees != null ? trees.head : null;
|
|
checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
|
|
argtypes = argtypes.tail;
|
|
trees = trees != null ? trees.tail : trees;
|
|
}
|
|
}
|
|
}
|
|
|
|
// where
|
|
private JCTree treeForDiagnostics(Env<AttrContext> env) {
|
|
return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
|
|
}
|
|
|
|
/**
|
|
* Does the actual argument conforms to the corresponding formal?
|
|
*/
|
|
abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
|
|
|
|
protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
|
|
boolean inferDiag = inferenceContext != infer.emptyContext;
|
|
InapplicableMethodException ex = inferDiag ?
|
|
infer.inferenceException : inapplicableMethodException;
|
|
if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
|
|
Object[] args2 = new Object[args.length + 1];
|
|
System.arraycopy(args, 0, args2, 1, args.length);
|
|
args2[0] = inferenceContext.inferenceVars();
|
|
args = args2;
|
|
}
|
|
String key = inferDiag ? diag.inferKey : diag.basicKey;
|
|
throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
|
|
}
|
|
|
|
public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
|
|
return nilMethodCheck;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Arity-based method check. A method is applicable if the number of actuals
|
|
* supplied conforms to the method signature.
|
|
*/
|
|
MethodCheck arityMethodCheck = new AbstractMethodCheck() {
|
|
@Override
|
|
void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
|
|
//do nothing - actual always compatible to formals
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return "arityMethodCheck";
|
|
}
|
|
};
|
|
|
|
List<Type> dummyArgs(int length) {
|
|
ListBuffer<Type> buf = new ListBuffer<>();
|
|
for (int i = 0 ; i < length ; i++) {
|
|
buf.append(Type.noType);
|
|
}
|
|
return buf.toList();
|
|
}
|
|
|
|
/**
|
|
* Main method applicability routine. Given a list of actual types A,
|
|
* a list of formal types F, determines whether the types in A are
|
|
* compatible (by method invocation conversion) with the types in F.
|
|
*
|
|
* Since this routine is shared between overload resolution and method
|
|
* type-inference, a (possibly empty) inference context is used to convert
|
|
* formal types to the corresponding 'undet' form ahead of a compatibility
|
|
* check so that constraints can be propagated and collected.
|
|
*
|
|
* Moreover, if one or more types in A is a deferred type, this routine uses
|
|
* DeferredAttr in order to perform deferred attribution. If one or more actual
|
|
* deferred types are stuck, they are placed in a queue and revisited later
|
|
* after the remainder of the arguments have been seen. If this is not sufficient
|
|
* to 'unstuck' the argument, a cyclic inference error is called out.
|
|
*
|
|
* A method check handler (see above) is used in order to report errors.
|
|
*/
|
|
MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
|
|
|
|
@Override
|
|
void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
|
|
ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
|
|
mresult.check(pos, actual);
|
|
}
|
|
|
|
@Override
|
|
public void argumentsAcceptable(final Env<AttrContext> env,
|
|
DeferredAttrContext deferredAttrContext,
|
|
List<Type> argtypes,
|
|
List<Type> formals,
|
|
Warner warn) {
|
|
super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
|
|
// should we check varargs element type accessibility?
|
|
if (deferredAttrContext.phase.isVarargsRequired()) {
|
|
if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
|
|
varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test that the runtime array element type corresponding to 't' is accessible. 't' should be the
|
|
* varargs element type of either the method invocation type signature (after inference completes)
|
|
* or the method declaration signature (before inference completes).
|
|
*/
|
|
private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
|
|
if (inferenceContext.free(t)) {
|
|
inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
|
|
@Override
|
|
public void typesInferred(InferenceContext inferenceContext) {
|
|
varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
|
|
}
|
|
});
|
|
} else {
|
|
if (!isAccessible(env, types.erasure(t))) {
|
|
Symbol location = env.enclClass.sym;
|
|
reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
|
|
}
|
|
}
|
|
}
|
|
|
|
private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
|
|
final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
|
|
CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
|
|
MethodCheckDiag methodDiag = varargsCheck ?
|
|
MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
|
|
|
|
@Override
|
|
public void report(DiagnosticPosition pos, JCDiagnostic details) {
|
|
reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
|
|
}
|
|
};
|
|
return new MethodResultInfo(to, checkContext);
|
|
}
|
|
|
|
@Override
|
|
public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
|
|
return new MostSpecificCheck(strict, actuals);
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return "resolveMethodCheck";
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This class handles method reference applicability checks; since during
|
|
* these checks it's sometime possible to have inference variables on
|
|
* the actual argument types list, the method applicability check must be
|
|
* extended so that inference variables are 'opened' as needed.
|
|
*/
|
|
class MethodReferenceCheck extends AbstractMethodCheck {
|
|
|
|
InferenceContext pendingInferenceContext;
|
|
|
|
MethodReferenceCheck(InferenceContext pendingInferenceContext) {
|
|
this.pendingInferenceContext = pendingInferenceContext;
|
|
}
|
|
|
|
@Override
|
|
void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
|
|
ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
|
|
mresult.check(pos, actual);
|
|
}
|
|
|
|
private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
|
|
final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
|
|
CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
|
|
MethodCheckDiag methodDiag = varargsCheck ?
|
|
MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
|
|
|
|
@Override
|
|
public boolean compatible(Type found, Type req, Warner warn) {
|
|
found = pendingInferenceContext.asUndetVar(found);
|
|
if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
|
|
req = types.boxedClass(req).type;
|
|
}
|
|
return super.compatible(found, req, warn);
|
|
}
|
|
|
|
@Override
|
|
public void report(DiagnosticPosition pos, JCDiagnostic details) {
|
|
reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
|
|
}
|
|
};
|
|
return new MethodResultInfo(to, checkContext);
|
|
}
|
|
|
|
@Override
|
|
public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
|
|
return new MostSpecificCheck(strict, actuals);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Check context to be used during method applicability checks. A method check
|
|
* context might contain inference variables.
|
|
*/
|
|
abstract class MethodCheckContext implements CheckContext {
|
|
|
|
boolean strict;
|
|
DeferredAttrContext deferredAttrContext;
|
|
Warner rsWarner;
|
|
|
|
public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
|
|
this.strict = strict;
|
|
this.deferredAttrContext = deferredAttrContext;
|
|
this.rsWarner = rsWarner;
|
|
}
|
|
|
|
public boolean compatible(Type found, Type req, Warner warn) {
|
|
InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
|
|
return strict ?
|
|
types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
|
|
types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
|
|
}
|
|
|
|
public void report(DiagnosticPosition pos, JCDiagnostic details) {
|
|
throw inapplicableMethodException.setMessage(details);
|
|
}
|
|
|
|
public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
|
|
return rsWarner;
|
|
}
|
|
|
|
public InferenceContext inferenceContext() {
|
|
return deferredAttrContext.inferenceContext;
|
|
}
|
|
|
|
public DeferredAttrContext deferredAttrContext() {
|
|
return deferredAttrContext;
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return "MethodReferenceCheck";
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* ResultInfo class to be used during method applicability checks. Check
|
|
* for deferred types goes through special path.
|
|
*/
|
|
class MethodResultInfo extends ResultInfo {
|
|
|
|
public MethodResultInfo(Type pt, CheckContext checkContext) {
|
|
attr.super(VAL, pt, checkContext);
|
|
}
|
|
|
|
@Override
|
|
protected Type check(DiagnosticPosition pos, Type found) {
|
|
if (found.hasTag(DEFERRED)) {
|
|
DeferredType dt = (DeferredType)found;
|
|
return dt.check(this);
|
|
} else {
|
|
Type uResult = U(found);
|
|
Type capturedType = pos == null || pos.getTree() == null ?
|
|
types.capture(uResult) :
|
|
checkContext.inferenceContext()
|
|
.cachedCapture(pos.getTree(), uResult, true);
|
|
return super.check(pos, chk.checkNonVoid(pos, capturedType));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* javac has a long-standing 'simplification' (see 6391995):
|
|
* given an actual argument type, the method check is performed
|
|
* on its upper bound. This leads to inconsistencies when an
|
|
* argument type is checked against itself. For example, given
|
|
* a type-variable T, it is not true that {@code U(T) <: T},
|
|
* so we need to guard against that.
|
|
*/
|
|
private Type U(Type found) {
|
|
return found == pt ?
|
|
found : types.cvarUpperBound(found);
|
|
}
|
|
|
|
@Override
|
|
protected MethodResultInfo dup(Type newPt) {
|
|
return new MethodResultInfo(newPt, checkContext);
|
|
}
|
|
|
|
@Override
|
|
protected ResultInfo dup(CheckContext newContext) {
|
|
return new MethodResultInfo(pt, newContext);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Most specific method applicability routine. Given a list of actual types A,
|
|
* a list of formal types F1, and a list of formal types F2, the routine determines
|
|
* as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
|
|
* argument types A.
|
|
*/
|
|
class MostSpecificCheck implements MethodCheck {
|
|
|
|
boolean strict;
|
|
List<Type> actuals;
|
|
|
|
MostSpecificCheck(boolean strict, List<Type> actuals) {
|
|
this.strict = strict;
|
|
this.actuals = actuals;
|
|
}
|
|
|
|
@Override
|
|
public void argumentsAcceptable(final Env<AttrContext> env,
|
|
DeferredAttrContext deferredAttrContext,
|
|
List<Type> formals1,
|
|
List<Type> formals2,
|
|
Warner warn) {
|
|
formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
|
|
while (formals2.nonEmpty()) {
|
|
ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
|
|
mresult.check(null, formals1.head);
|
|
formals1 = formals1.tail;
|
|
formals2 = formals2.tail;
|
|
actuals = actuals.isEmpty() ? actuals : actuals.tail;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create a method check context to be used during the most specific applicability check
|
|
*/
|
|
ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
|
|
Warner rsWarner, Type actual) {
|
|
return attr.new ResultInfo(Kinds.VAL, to,
|
|
new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
|
|
}
|
|
|
|
/**
|
|
* Subclass of method check context class that implements most specific
|
|
* method conversion. If the actual type under analysis is a deferred type
|
|
* a full blown structural analysis is carried out.
|
|
*/
|
|
class MostSpecificCheckContext extends MethodCheckContext {
|
|
|
|
Type actual;
|
|
|
|
public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
|
|
super(strict, deferredAttrContext, rsWarner);
|
|
this.actual = actual;
|
|
}
|
|
|
|
public boolean compatible(Type found, Type req, Warner warn) {
|
|
if (allowFunctionalInterfaceMostSpecific &&
|
|
unrelatedFunctionalInterfaces(found, req) &&
|
|
(actual != null && actual.getTag() == DEFERRED)) {
|
|
DeferredType dt = (DeferredType) actual;
|
|
DeferredType.SpeculativeCache.Entry e =
|
|
dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
|
|
if (e != null && e.speculativeTree != deferredAttr.stuckTree) {
|
|
return functionalInterfaceMostSpecific(found, req, e.speculativeTree, warn);
|
|
}
|
|
}
|
|
return super.compatible(found, req, warn);
|
|
}
|
|
|
|
/** Whether {@code t} and {@code s} are unrelated functional interface types. */
|
|
private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
|
|
return types.isFunctionalInterface(t.tsym) &&
|
|
types.isFunctionalInterface(s.tsym) &&
|
|
types.asSuper(t, s.tsym) == null &&
|
|
types.asSuper(s, t.tsym) == null;
|
|
}
|
|
|
|
/** Parameters {@code t} and {@code s} are unrelated functional interface types. */
|
|
private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree, Warner warn) {
|
|
FunctionalInterfaceMostSpecificChecker msc = new FunctionalInterfaceMostSpecificChecker(t, s, warn);
|
|
msc.scan(tree);
|
|
return msc.result;
|
|
}
|
|
|
|
/**
|
|
* Tests whether one functional interface type can be considered more specific
|
|
* than another unrelated functional interface type for the scanned expression.
|
|
*/
|
|
class FunctionalInterfaceMostSpecificChecker extends DeferredAttr.PolyScanner {
|
|
|
|
final Type t;
|
|
final Type s;
|
|
final Warner warn;
|
|
boolean result;
|
|
|
|
/** Parameters {@code t} and {@code s} are unrelated functional interface types. */
|
|
FunctionalInterfaceMostSpecificChecker(Type t, Type s, Warner warn) {
|
|
this.t = t;
|
|
this.s = s;
|
|
this.warn = warn;
|
|
result = true;
|
|
}
|
|
|
|
@Override
|
|
void skip(JCTree tree) {
|
|
result &= false;
|
|
}
|
|
|
|
@Override
|
|
public void visitConditional(JCConditional tree) {
|
|
scan(tree.truepart);
|
|
scan(tree.falsepart);
|
|
}
|
|
|
|
@Override
|
|
public void visitReference(JCMemberReference tree) {
|
|
Type desc_t = types.findDescriptorType(t);
|
|
Type desc_s = types.findDescriptorType(s);
|
|
// use inference variables here for more-specific inference (18.5.4)
|
|
if (!types.isSameTypes(desc_t.getParameterTypes(),
|
|
inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
|
|
result &= false;
|
|
} else {
|
|
// compare return types
|
|
Type ret_t = desc_t.getReturnType();
|
|
Type ret_s = desc_s.getReturnType();
|
|
if (ret_s.hasTag(VOID)) {
|
|
result &= true;
|
|
} else if (ret_t.hasTag(VOID)) {
|
|
result &= false;
|
|
} else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
|
|
boolean retValIsPrimitive =
|
|
tree.refPolyKind == PolyKind.STANDALONE &&
|
|
tree.sym.type.getReturnType().isPrimitive();
|
|
result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
|
|
(retValIsPrimitive != ret_s.isPrimitive());
|
|
} else {
|
|
result &= MostSpecificCheckContext.super.compatible(ret_t, ret_s, warn);
|
|
}
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void visitLambda(JCLambda tree) {
|
|
Type desc_t = types.findDescriptorType(t);
|
|
Type desc_s = types.findDescriptorType(s);
|
|
// use inference variables here for more-specific inference (18.5.4)
|
|
if (!types.isSameTypes(desc_t.getParameterTypes(),
|
|
inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
|
|
result &= false;
|
|
} else {
|
|
// compare return types
|
|
Type ret_t = desc_t.getReturnType();
|
|
Type ret_s = desc_s.getReturnType();
|
|
if (ret_s.hasTag(VOID)) {
|
|
result &= true;
|
|
} else if (ret_t.hasTag(VOID)) {
|
|
result &= false;
|
|
} else if (unrelatedFunctionalInterfaces(ret_t, ret_s)) {
|
|
for (JCExpression expr : lambdaResults(tree)) {
|
|
result &= functionalInterfaceMostSpecific(ret_t, ret_s, expr, warn);
|
|
}
|
|
} else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
|
|
for (JCExpression expr : lambdaResults(tree)) {
|
|
boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
|
|
result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
|
|
(retValIsPrimitive != ret_s.isPrimitive());
|
|
}
|
|
} else {
|
|
result &= MostSpecificCheckContext.super.compatible(ret_t, ret_s, warn);
|
|
}
|
|
}
|
|
}
|
|
//where
|
|
|
|
private List<JCExpression> lambdaResults(JCLambda lambda) {
|
|
if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
|
|
return List.of((JCExpression) lambda.body);
|
|
} else {
|
|
final ListBuffer<JCExpression> buffer = new ListBuffer<>();
|
|
DeferredAttr.LambdaReturnScanner lambdaScanner =
|
|
new DeferredAttr.LambdaReturnScanner() {
|
|
@Override
|
|
public void visitReturn(JCReturn tree) {
|
|
if (tree.expr != null) {
|
|
buffer.append(tree.expr);
|
|
}
|
|
}
|
|
};
|
|
lambdaScanner.scan(lambda.body);
|
|
return buffer.toList();
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
|
|
Assert.error("Cannot get here!");
|
|
return null;
|
|
}
|
|
}
|
|
|
|
public static class InapplicableMethodException extends RuntimeException {
|
|
private static final long serialVersionUID = 0;
|
|
|
|
JCDiagnostic diagnostic;
|
|
JCDiagnostic.Factory diags;
|
|
|
|
InapplicableMethodException(JCDiagnostic.Factory diags) {
|
|
this.diagnostic = null;
|
|
this.diags = diags;
|
|
}
|
|
InapplicableMethodException setMessage() {
|
|
return setMessage((JCDiagnostic)null);
|
|
}
|
|
InapplicableMethodException setMessage(String key) {
|
|
return setMessage(key != null ? diags.fragment(key) : null);
|
|
}
|
|
InapplicableMethodException setMessage(String key, Object... args) {
|
|
return setMessage(key != null ? diags.fragment(key, args) : null);
|
|
}
|
|
InapplicableMethodException setMessage(JCDiagnostic diag) {
|
|
this.diagnostic = diag;
|
|
return this;
|
|
}
|
|
|
|
public JCDiagnostic getDiagnostic() {
|
|
return diagnostic;
|
|
}
|
|
}
|
|
private final InapplicableMethodException inapplicableMethodException;
|
|
|
|
/* ***************************************************************************
|
|
* Symbol lookup
|
|
* the following naming conventions for arguments are used
|
|
*
|
|
* env is the environment where the symbol was mentioned
|
|
* site is the type of which the symbol is a member
|
|
* name is the symbol's name
|
|
* if no arguments are given
|
|
* argtypes are the value arguments, if we search for a method
|
|
*
|
|
* If no symbol was found, a ResolveError detailing the problem is returned.
|
|
****************************************************************************/
|
|
|
|
/** Find field. Synthetic fields are always skipped.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the selection takes place.
|
|
* @param name The name of the field.
|
|
* @param c The class to search for the field. This is always
|
|
* a superclass or implemented interface of site's class.
|
|
*/
|
|
Symbol findField(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
TypeSymbol c) {
|
|
while (c.type.hasTag(TYPEVAR))
|
|
c = c.type.getUpperBound().tsym;
|
|
Symbol bestSoFar = varNotFound;
|
|
Symbol sym;
|
|
Scope.Entry e = c.members().lookup(name);
|
|
while (e.scope != null) {
|
|
if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
|
|
return isAccessible(env, site, e.sym)
|
|
? e.sym : new AccessError(env, site, e.sym);
|
|
}
|
|
e = e.next();
|
|
}
|
|
Type st = types.supertype(c.type);
|
|
if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
|
|
sym = findField(env, site, name, st.tsym);
|
|
if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
for (List<Type> l = types.interfaces(c.type);
|
|
bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
|
|
l = l.tail) {
|
|
sym = findField(env, site, name, l.head.tsym);
|
|
if (bestSoFar.exists() && sym.exists() &&
|
|
sym.owner != bestSoFar.owner)
|
|
bestSoFar = new AmbiguityError(bestSoFar, sym);
|
|
else if (sym.kind < bestSoFar.kind)
|
|
bestSoFar = sym;
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
/** Resolve a field identifier, throw a fatal error if not found.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the method invocation.
|
|
* @param site The type of the qualifying expression, in which
|
|
* identifier is searched.
|
|
* @param name The identifier's name.
|
|
*/
|
|
public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Type site, Name name) {
|
|
Symbol sym = findField(env, site, name, site.tsym);
|
|
if (sym.kind == VAR) return (VarSymbol)sym;
|
|
else throw new FatalError(
|
|
diags.fragment("fatal.err.cant.locate.field",
|
|
name));
|
|
}
|
|
|
|
/** Find unqualified variable or field with given name.
|
|
* Synthetic fields always skipped.
|
|
* @param env The current environment.
|
|
* @param name The name of the variable or field.
|
|
*/
|
|
Symbol findVar(Env<AttrContext> env, Name name) {
|
|
Symbol bestSoFar = varNotFound;
|
|
Symbol sym;
|
|
Env<AttrContext> env1 = env;
|
|
boolean staticOnly = false;
|
|
while (env1.outer != null) {
|
|
if (isStatic(env1)) staticOnly = true;
|
|
Scope.Entry e = env1.info.scope.lookup(name);
|
|
while (e.scope != null &&
|
|
(e.sym.kind != VAR ||
|
|
(e.sym.flags_field & SYNTHETIC) != 0))
|
|
e = e.next();
|
|
sym = (e.scope != null)
|
|
? e.sym
|
|
: findField(
|
|
env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
|
|
if (sym.exists()) {
|
|
if (staticOnly &&
|
|
sym.kind == VAR &&
|
|
sym.owner.kind == TYP &&
|
|
(sym.flags() & STATIC) == 0)
|
|
return new StaticError(sym);
|
|
else
|
|
return sym;
|
|
} else if (sym.kind < bestSoFar.kind) {
|
|
bestSoFar = sym;
|
|
}
|
|
|
|
if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
|
|
env1 = env1.outer;
|
|
}
|
|
|
|
sym = findField(env, syms.predefClass.type, name, syms.predefClass);
|
|
if (sym.exists())
|
|
return sym;
|
|
if (bestSoFar.exists())
|
|
return bestSoFar;
|
|
|
|
Symbol origin = null;
|
|
for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
|
|
Scope.Entry e = sc.lookup(name);
|
|
for (; e.scope != null; e = e.next()) {
|
|
sym = e.sym;
|
|
if (sym.kind != VAR)
|
|
continue;
|
|
// invariant: sym.kind == VAR
|
|
if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
|
|
return new AmbiguityError(bestSoFar, sym);
|
|
else if (bestSoFar.kind >= VAR) {
|
|
origin = e.getOrigin().owner;
|
|
bestSoFar = isAccessible(env, origin.type, sym)
|
|
? sym : new AccessError(env, origin.type, sym);
|
|
}
|
|
}
|
|
if (bestSoFar.exists()) break;
|
|
}
|
|
if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
|
|
return bestSoFar.clone(origin);
|
|
else
|
|
return bestSoFar;
|
|
}
|
|
|
|
Warner noteWarner = new Warner();
|
|
|
|
/** Select the best method for a call site among two choices.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the
|
|
* selection takes place.
|
|
* @param argtypes The invocation's value arguments,
|
|
* @param typeargtypes The invocation's type arguments,
|
|
* @param sym Proposed new best match.
|
|
* @param bestSoFar Previously found best match.
|
|
* @param allowBoxing Allow boxing conversions of arguments.
|
|
* @param useVarargs Box trailing arguments into an array for varargs.
|
|
*/
|
|
@SuppressWarnings("fallthrough")
|
|
Symbol selectBest(Env<AttrContext> env,
|
|
Type site,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
Symbol sym,
|
|
Symbol bestSoFar,
|
|
boolean allowBoxing,
|
|
boolean useVarargs,
|
|
boolean operator) {
|
|
if (sym.kind == ERR ||
|
|
!sym.isInheritedIn(site.tsym, types)) {
|
|
return bestSoFar;
|
|
} else if (useVarargs && (sym.flags() & VARARGS) == 0) {
|
|
return bestSoFar.kind >= ERRONEOUS ?
|
|
new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
|
|
bestSoFar;
|
|
}
|
|
Assert.check(sym.kind < AMBIGUOUS);
|
|
try {
|
|
Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
|
|
allowBoxing, useVarargs, types.noWarnings);
|
|
if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
|
|
currentResolutionContext.addApplicableCandidate(sym, mt);
|
|
} catch (InapplicableMethodException ex) {
|
|
if (!operator)
|
|
currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
|
|
switch (bestSoFar.kind) {
|
|
case ABSENT_MTH:
|
|
return new InapplicableSymbolError(currentResolutionContext);
|
|
case WRONG_MTH:
|
|
if (operator) return bestSoFar;
|
|
bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
|
|
default:
|
|
return bestSoFar;
|
|
}
|
|
}
|
|
if (!isAccessible(env, site, sym)) {
|
|
return (bestSoFar.kind == ABSENT_MTH)
|
|
? new AccessError(env, site, sym)
|
|
: bestSoFar;
|
|
}
|
|
return (bestSoFar.kind > AMBIGUOUS)
|
|
? sym
|
|
: mostSpecific(argtypes, sym, bestSoFar, env, site,
|
|
allowBoxing && operator, useVarargs);
|
|
}
|
|
|
|
/* Return the most specific of the two methods for a call,
|
|
* given that both are accessible and applicable.
|
|
* @param m1 A new candidate for most specific.
|
|
* @param m2 The previous most specific candidate.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the selection
|
|
* takes place.
|
|
* @param allowBoxing Allow boxing conversions of arguments.
|
|
* @param useVarargs Box trailing arguments into an array for varargs.
|
|
*/
|
|
Symbol mostSpecific(List<Type> argtypes, Symbol m1,
|
|
Symbol m2,
|
|
Env<AttrContext> env,
|
|
final Type site,
|
|
boolean allowBoxing,
|
|
boolean useVarargs) {
|
|
switch (m2.kind) {
|
|
case MTH:
|
|
if (m1 == m2) return m1;
|
|
boolean m1SignatureMoreSpecific =
|
|
signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
|
|
boolean m2SignatureMoreSpecific =
|
|
signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
|
|
if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
|
|
Type mt1 = types.memberType(site, m1);
|
|
Type mt2 = types.memberType(site, m2);
|
|
if (!types.overrideEquivalent(mt1, mt2))
|
|
return ambiguityError(m1, m2);
|
|
|
|
// same signature; select (a) the non-bridge method, or
|
|
// (b) the one that overrides the other, or (c) the concrete
|
|
// one, or (d) merge both abstract signatures
|
|
if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
|
|
return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
|
|
|
|
// if one overrides or hides the other, use it
|
|
TypeSymbol m1Owner = (TypeSymbol)m1.owner;
|
|
TypeSymbol m2Owner = (TypeSymbol)m2.owner;
|
|
if (types.asSuper(m1Owner.type, m2Owner) != null &&
|
|
((m1.owner.flags_field & INTERFACE) == 0 ||
|
|
(m2.owner.flags_field & INTERFACE) != 0) &&
|
|
m1.overrides(m2, m1Owner, types, false))
|
|
return m1;
|
|
if (types.asSuper(m2Owner.type, m1Owner) != null &&
|
|
((m2.owner.flags_field & INTERFACE) == 0 ||
|
|
(m1.owner.flags_field & INTERFACE) != 0) &&
|
|
m2.overrides(m1, m2Owner, types, false))
|
|
return m2;
|
|
boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
|
|
boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
|
|
if (m1Abstract && !m2Abstract) return m2;
|
|
if (m2Abstract && !m1Abstract) return m1;
|
|
// both abstract or both concrete
|
|
return ambiguityError(m1, m2);
|
|
}
|
|
if (m1SignatureMoreSpecific) return m1;
|
|
if (m2SignatureMoreSpecific) return m2;
|
|
return ambiguityError(m1, m2);
|
|
case AMBIGUOUS:
|
|
//compare m1 to ambiguous methods in m2
|
|
AmbiguityError e = (AmbiguityError)m2.baseSymbol();
|
|
boolean m1MoreSpecificThanAnyAmbiguous = true;
|
|
boolean allAmbiguousMoreSpecificThanM1 = true;
|
|
for (Symbol s : e.ambiguousSyms) {
|
|
Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs);
|
|
m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
|
|
allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
|
|
}
|
|
if (m1MoreSpecificThanAnyAmbiguous)
|
|
return m1;
|
|
//if m1 is more specific than some ambiguous methods, but other ambiguous methods are
|
|
//more specific than m1, add it as a new ambiguous method:
|
|
if (!allAmbiguousMoreSpecificThanM1)
|
|
e.addAmbiguousSymbol(m1);
|
|
return e;
|
|
default:
|
|
throw new AssertionError();
|
|
}
|
|
}
|
|
//where
|
|
private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
|
|
noteWarner.clear();
|
|
int maxLength = Math.max(
|
|
Math.max(m1.type.getParameterTypes().length(), actuals.length()),
|
|
m2.type.getParameterTypes().length());
|
|
MethodResolutionContext prevResolutionContext = currentResolutionContext;
|
|
try {
|
|
currentResolutionContext = new MethodResolutionContext();
|
|
currentResolutionContext.step = prevResolutionContext.step;
|
|
currentResolutionContext.methodCheck =
|
|
prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
|
|
Type mst = instantiate(env, site, m2, null,
|
|
adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
|
|
allowBoxing, useVarargs, noteWarner);
|
|
return mst != null &&
|
|
!noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
|
|
} finally {
|
|
currentResolutionContext = prevResolutionContext;
|
|
}
|
|
}
|
|
|
|
List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
|
|
if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
|
|
Type varargsElem = types.elemtype(args.last());
|
|
if (varargsElem == null) {
|
|
Assert.error("Bad varargs = " + args.last() + " " + msym);
|
|
}
|
|
List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
|
|
while (newArgs.length() < length) {
|
|
newArgs = newArgs.append(newArgs.last());
|
|
}
|
|
return newArgs;
|
|
} else {
|
|
return args;
|
|
}
|
|
}
|
|
//where
|
|
Type mostSpecificReturnType(Type mt1, Type mt2) {
|
|
Type rt1 = mt1.getReturnType();
|
|
Type rt2 = mt2.getReturnType();
|
|
|
|
if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
|
|
//if both are generic methods, adjust return type ahead of subtyping check
|
|
rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
|
|
}
|
|
//first use subtyping, then return type substitutability
|
|
if (types.isSubtype(rt1, rt2)) {
|
|
return mt1;
|
|
} else if (types.isSubtype(rt2, rt1)) {
|
|
return mt2;
|
|
} else if (types.returnTypeSubstitutable(mt1, mt2)) {
|
|
return mt1;
|
|
} else if (types.returnTypeSubstitutable(mt2, mt1)) {
|
|
return mt2;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
//where
|
|
Symbol ambiguityError(Symbol m1, Symbol m2) {
|
|
if (((m1.flags() | m2.flags()) & CLASH) != 0) {
|
|
return (m1.flags() & CLASH) == 0 ? m1 : m2;
|
|
} else {
|
|
return new AmbiguityError(m1, m2);
|
|
}
|
|
}
|
|
|
|
Symbol findMethodInScope(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
Scope sc,
|
|
Symbol bestSoFar,
|
|
boolean allowBoxing,
|
|
boolean useVarargs,
|
|
boolean operator,
|
|
boolean abstractok) {
|
|
for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
|
|
bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
|
|
bestSoFar, allowBoxing, useVarargs, operator);
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
//where
|
|
class LookupFilter implements Filter<Symbol> {
|
|
|
|
boolean abstractOk;
|
|
|
|
LookupFilter(boolean abstractOk) {
|
|
this.abstractOk = abstractOk;
|
|
}
|
|
|
|
public boolean accepts(Symbol s) {
|
|
long flags = s.flags();
|
|
return s.kind == MTH &&
|
|
(flags & SYNTHETIC) == 0 &&
|
|
(abstractOk ||
|
|
(flags & DEFAULT) != 0 ||
|
|
(flags & ABSTRACT) == 0);
|
|
}
|
|
};
|
|
|
|
/** Find best qualified method matching given name, type and value
|
|
* arguments.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the selection
|
|
* takes place.
|
|
* @param name The method's name.
|
|
* @param argtypes The method's value arguments.
|
|
* @param typeargtypes The method's type arguments
|
|
* @param allowBoxing Allow boxing conversions of arguments.
|
|
* @param useVarargs Box trailing arguments into an array for varargs.
|
|
*/
|
|
Symbol findMethod(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
boolean allowBoxing,
|
|
boolean useVarargs,
|
|
boolean operator) {
|
|
Symbol bestSoFar = methodNotFound;
|
|
bestSoFar = findMethod(env,
|
|
site,
|
|
name,
|
|
argtypes,
|
|
typeargtypes,
|
|
site.tsym.type,
|
|
bestSoFar,
|
|
allowBoxing,
|
|
useVarargs,
|
|
operator);
|
|
return bestSoFar;
|
|
}
|
|
// where
|
|
private Symbol findMethod(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
Type intype,
|
|
Symbol bestSoFar,
|
|
boolean allowBoxing,
|
|
boolean useVarargs,
|
|
boolean operator) {
|
|
@SuppressWarnings({"unchecked","rawtypes"})
|
|
List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
|
|
InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
|
|
for (TypeSymbol s : superclasses(intype)) {
|
|
bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
|
|
s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
|
|
if (name == names.init) return bestSoFar;
|
|
iphase = (iphase == null) ? null : iphase.update(s, this);
|
|
if (iphase != null) {
|
|
for (Type itype : types.interfaces(s.type)) {
|
|
itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
|
|
}
|
|
}
|
|
}
|
|
|
|
Symbol concrete = bestSoFar.kind < ERR &&
|
|
(bestSoFar.flags() & ABSTRACT) == 0 ?
|
|
bestSoFar : methodNotFound;
|
|
|
|
for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
|
|
//keep searching for abstract methods
|
|
for (Type itype : itypes[iphase2.ordinal()]) {
|
|
if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
|
|
if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
|
|
(itype.tsym.flags() & DEFAULT) == 0) continue;
|
|
bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
|
|
itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
|
|
if (concrete != bestSoFar &&
|
|
concrete.kind < ERR && bestSoFar.kind < ERR &&
|
|
types.isSubSignature(concrete.type, bestSoFar.type)) {
|
|
//this is an hack - as javac does not do full membership checks
|
|
//most specific ends up comparing abstract methods that might have
|
|
//been implemented by some concrete method in a subclass and,
|
|
//because of raw override, it is possible for an abstract method
|
|
//to be more specific than the concrete method - so we need
|
|
//to explicitly call that out (see CR 6178365)
|
|
bestSoFar = concrete;
|
|
}
|
|
}
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
enum InterfaceLookupPhase {
|
|
ABSTRACT_OK() {
|
|
@Override
|
|
InterfaceLookupPhase update(Symbol s, Resolve rs) {
|
|
//We should not look for abstract methods if receiver is a concrete class
|
|
//(as concrete classes are expected to implement all abstracts coming
|
|
//from superinterfaces)
|
|
if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
|
|
return this;
|
|
} else {
|
|
return DEFAULT_OK;
|
|
}
|
|
}
|
|
},
|
|
DEFAULT_OK() {
|
|
@Override
|
|
InterfaceLookupPhase update(Symbol s, Resolve rs) {
|
|
return this;
|
|
}
|
|
};
|
|
|
|
abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
|
|
}
|
|
|
|
/**
|
|
* Return an Iterable object to scan the superclasses of a given type.
|
|
* It's crucial that the scan is done lazily, as we don't want to accidentally
|
|
* access more supertypes than strictly needed (as this could trigger completion
|
|
* errors if some of the not-needed supertypes are missing/ill-formed).
|
|
*/
|
|
Iterable<TypeSymbol> superclasses(final Type intype) {
|
|
return new Iterable<TypeSymbol>() {
|
|
public Iterator<TypeSymbol> iterator() {
|
|
return new Iterator<TypeSymbol>() {
|
|
|
|
List<TypeSymbol> seen = List.nil();
|
|
TypeSymbol currentSym = symbolFor(intype);
|
|
TypeSymbol prevSym = null;
|
|
|
|
public boolean hasNext() {
|
|
if (currentSym == syms.noSymbol) {
|
|
currentSym = symbolFor(types.supertype(prevSym.type));
|
|
}
|
|
return currentSym != null;
|
|
}
|
|
|
|
public TypeSymbol next() {
|
|
prevSym = currentSym;
|
|
currentSym = syms.noSymbol;
|
|
Assert.check(prevSym != null || prevSym != syms.noSymbol);
|
|
return prevSym;
|
|
}
|
|
|
|
public void remove() {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
|
|
TypeSymbol symbolFor(Type t) {
|
|
if (!t.hasTag(CLASS) &&
|
|
!t.hasTag(TYPEVAR)) {
|
|
return null;
|
|
}
|
|
while (t.hasTag(TYPEVAR))
|
|
t = t.getUpperBound();
|
|
if (seen.contains(t.tsym)) {
|
|
//degenerate case in which we have a circular
|
|
//class hierarchy - because of ill-formed classfiles
|
|
return null;
|
|
}
|
|
seen = seen.prepend(t.tsym);
|
|
return t.tsym;
|
|
}
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
/** Find unqualified method matching given name, type and value arguments.
|
|
* @param env The current environment.
|
|
* @param name The method's name.
|
|
* @param argtypes The method's value arguments.
|
|
* @param typeargtypes The method's type arguments.
|
|
* @param allowBoxing Allow boxing conversions of arguments.
|
|
* @param useVarargs Box trailing arguments into an array for varargs.
|
|
*/
|
|
Symbol findFun(Env<AttrContext> env, Name name,
|
|
List<Type> argtypes, List<Type> typeargtypes,
|
|
boolean allowBoxing, boolean useVarargs) {
|
|
Symbol bestSoFar = methodNotFound;
|
|
Symbol sym;
|
|
Env<AttrContext> env1 = env;
|
|
boolean staticOnly = false;
|
|
while (env1.outer != null) {
|
|
if (isStatic(env1)) staticOnly = true;
|
|
Assert.check(env1.info.preferredTreeForDiagnostics == null);
|
|
env1.info.preferredTreeForDiagnostics = env.tree;
|
|
try {
|
|
sym = findMethod(
|
|
env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
|
|
allowBoxing, useVarargs, false);
|
|
if (sym.exists()) {
|
|
if (staticOnly &&
|
|
sym.kind == MTH &&
|
|
sym.owner.kind == TYP &&
|
|
(sym.flags() & STATIC) == 0) return new StaticError(sym);
|
|
else return sym;
|
|
} else if (sym.kind < bestSoFar.kind) {
|
|
bestSoFar = sym;
|
|
}
|
|
} finally {
|
|
env1.info.preferredTreeForDiagnostics = null;
|
|
}
|
|
if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
|
|
env1 = env1.outer;
|
|
}
|
|
|
|
sym = findMethod(env, syms.predefClass.type, name, argtypes,
|
|
typeargtypes, allowBoxing, useVarargs, false);
|
|
if (sym.exists())
|
|
return sym;
|
|
|
|
Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
|
|
for (; e.scope != null; e = e.next()) {
|
|
sym = e.sym;
|
|
Type origin = e.getOrigin().owner.type;
|
|
if (sym.kind == MTH) {
|
|
if (e.sym.owner.type != origin)
|
|
sym = sym.clone(e.getOrigin().owner);
|
|
if (!isAccessible(env, origin, sym))
|
|
sym = new AccessError(env, origin, sym);
|
|
bestSoFar = selectBest(env, origin,
|
|
argtypes, typeargtypes,
|
|
sym, bestSoFar,
|
|
allowBoxing, useVarargs, false);
|
|
}
|
|
}
|
|
if (bestSoFar.exists())
|
|
return bestSoFar;
|
|
|
|
e = env.toplevel.starImportScope.lookup(name);
|
|
for (; e.scope != null; e = e.next()) {
|
|
sym = e.sym;
|
|
Type origin = e.getOrigin().owner.type;
|
|
if (sym.kind == MTH) {
|
|
if (e.sym.owner.type != origin)
|
|
sym = sym.clone(e.getOrigin().owner);
|
|
if (!isAccessible(env, origin, sym))
|
|
sym = new AccessError(env, origin, sym);
|
|
bestSoFar = selectBest(env, origin,
|
|
argtypes, typeargtypes,
|
|
sym, bestSoFar,
|
|
allowBoxing, useVarargs, false);
|
|
}
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
/** Load toplevel or member class with given fully qualified name and
|
|
* verify that it is accessible.
|
|
* @param env The current environment.
|
|
* @param name The fully qualified name of the class to be loaded.
|
|
*/
|
|
Symbol loadClass(Env<AttrContext> env, Name name) {
|
|
try {
|
|
ClassSymbol c = reader.loadClass(name);
|
|
return isAccessible(env, c) ? c : new AccessError(c);
|
|
} catch (ClassReader.BadClassFile err) {
|
|
throw err;
|
|
} catch (CompletionFailure ex) {
|
|
return typeNotFound;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Find a type declared in a scope (not inherited). Return null
|
|
* if none is found.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the selection takes
|
|
* place.
|
|
* @param name The type's name.
|
|
* @param c The class to search for the member type. This is
|
|
* always a superclass or implemented interface of
|
|
* site's class.
|
|
*/
|
|
Symbol findImmediateMemberType(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
TypeSymbol c) {
|
|
Scope.Entry e = c.members().lookup(name);
|
|
while (e.scope != null) {
|
|
if (e.sym.kind == TYP) {
|
|
return isAccessible(env, site, e.sym)
|
|
? e.sym
|
|
: new AccessError(env, site, e.sym);
|
|
}
|
|
e = e.next();
|
|
}
|
|
return typeNotFound;
|
|
}
|
|
|
|
/** Find a member type inherited from a superclass or interface.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the selection takes
|
|
* place.
|
|
* @param name The type's name.
|
|
* @param c The class to search for the member type. This is
|
|
* always a superclass or implemented interface of
|
|
* site's class.
|
|
*/
|
|
Symbol findInheritedMemberType(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
TypeSymbol c) {
|
|
Symbol bestSoFar = typeNotFound;
|
|
Symbol sym;
|
|
Type st = types.supertype(c.type);
|
|
if (st != null && st.hasTag(CLASS)) {
|
|
sym = findMemberType(env, site, name, st.tsym);
|
|
if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
for (List<Type> l = types.interfaces(c.type);
|
|
bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
|
|
l = l.tail) {
|
|
sym = findMemberType(env, site, name, l.head.tsym);
|
|
if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
|
|
sym.owner != bestSoFar.owner)
|
|
bestSoFar = new AmbiguityError(bestSoFar, sym);
|
|
else if (sym.kind < bestSoFar.kind)
|
|
bestSoFar = sym;
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
/** Find qualified member type.
|
|
* @param env The current environment.
|
|
* @param site The original type from where the selection takes
|
|
* place.
|
|
* @param name The type's name.
|
|
* @param c The class to search for the member type. This is
|
|
* always a superclass or implemented interface of
|
|
* site's class.
|
|
*/
|
|
Symbol findMemberType(Env<AttrContext> env,
|
|
Type site,
|
|
Name name,
|
|
TypeSymbol c) {
|
|
Symbol sym = findImmediateMemberType(env, site, name, c);
|
|
|
|
if (sym != typeNotFound)
|
|
return sym;
|
|
|
|
return findInheritedMemberType(env, site, name, c);
|
|
|
|
}
|
|
|
|
/** Find a global type in given scope and load corresponding class.
|
|
* @param env The current environment.
|
|
* @param scope The scope in which to look for the type.
|
|
* @param name The type's name.
|
|
*/
|
|
Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
|
|
Symbol bestSoFar = typeNotFound;
|
|
for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
|
|
Symbol sym = loadClass(env, e.sym.flatName());
|
|
if (bestSoFar.kind == TYP && sym.kind == TYP &&
|
|
bestSoFar != sym)
|
|
return new AmbiguityError(bestSoFar, sym);
|
|
else if (sym.kind < bestSoFar.kind)
|
|
bestSoFar = sym;
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
|
|
for (Scope.Entry e = env.info.scope.lookup(name);
|
|
e.scope != null;
|
|
e = e.next()) {
|
|
if (e.sym.kind == TYP) {
|
|
if (staticOnly &&
|
|
e.sym.type.hasTag(TYPEVAR) &&
|
|
e.sym.owner.kind == TYP)
|
|
return new StaticError(e.sym);
|
|
return e.sym;
|
|
}
|
|
}
|
|
return typeNotFound;
|
|
}
|
|
|
|
/** Find an unqualified type symbol.
|
|
* @param env The current environment.
|
|
* @param name The type's name.
|
|
*/
|
|
Symbol findType(Env<AttrContext> env, Name name) {
|
|
Symbol bestSoFar = typeNotFound;
|
|
Symbol sym;
|
|
boolean staticOnly = false;
|
|
for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
|
|
if (isStatic(env1)) staticOnly = true;
|
|
// First, look for a type variable and the first member type
|
|
final Symbol tyvar = findTypeVar(env1, name, staticOnly);
|
|
sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
|
|
name, env1.enclClass.sym);
|
|
|
|
// Return the type variable if we have it, and have no
|
|
// immediate member, OR the type variable is for a method.
|
|
if (tyvar != typeNotFound) {
|
|
if (sym == typeNotFound ||
|
|
(tyvar.kind == TYP && tyvar.exists() &&
|
|
tyvar.owner.kind == MTH))
|
|
return tyvar;
|
|
}
|
|
|
|
// If the environment is a class def, finish up,
|
|
// otherwise, do the entire findMemberType
|
|
if (sym == typeNotFound)
|
|
sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
|
|
name, env1.enclClass.sym);
|
|
|
|
if (staticOnly && sym.kind == TYP &&
|
|
sym.type.hasTag(CLASS) &&
|
|
sym.type.getEnclosingType().hasTag(CLASS) &&
|
|
env1.enclClass.sym.type.isParameterized() &&
|
|
sym.type.getEnclosingType().isParameterized())
|
|
return new StaticError(sym);
|
|
else if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
|
|
JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
|
|
if ((encl.sym.flags() & STATIC) != 0)
|
|
staticOnly = true;
|
|
}
|
|
|
|
if (!env.tree.hasTag(IMPORT)) {
|
|
sym = findGlobalType(env, env.toplevel.namedImportScope, name);
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
|
|
sym = findGlobalType(env, env.toplevel.packge.members(), name);
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
|
|
sym = findGlobalType(env, env.toplevel.starImportScope, name);
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
|
|
return bestSoFar;
|
|
}
|
|
|
|
/** Find an unqualified identifier which matches a specified kind set.
|
|
* @param env The current environment.
|
|
* @param name The identifier's name.
|
|
* @param kind Indicates the possible symbol kinds
|
|
* (a subset of VAL, TYP, PCK).
|
|
*/
|
|
Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
|
|
Symbol bestSoFar = typeNotFound;
|
|
Symbol sym;
|
|
|
|
if ((kind & VAR) != 0) {
|
|
sym = findVar(env, name);
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
|
|
if ((kind & TYP) != 0) {
|
|
sym = findType(env, name);
|
|
if (sym.kind==TYP) {
|
|
reportDependence(env.enclClass.sym, sym);
|
|
}
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
|
|
if ((kind & PCK) != 0) return reader.enterPackage(name);
|
|
else return bestSoFar;
|
|
}
|
|
|
|
/** Report dependencies.
|
|
* @param from The enclosing class sym
|
|
* @param to The found identifier that the class depends on.
|
|
*/
|
|
public void reportDependence(Symbol from, Symbol to) {
|
|
// Override if you want to collect the reported dependencies.
|
|
}
|
|
|
|
/** Find an identifier in a package which matches a specified kind set.
|
|
* @param env The current environment.
|
|
* @param name The identifier's name.
|
|
* @param kind Indicates the possible symbol kinds
|
|
* (a nonempty subset of TYP, PCK).
|
|
*/
|
|
Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
|
|
Name name, int kind) {
|
|
Name fullname = TypeSymbol.formFullName(name, pck);
|
|
Symbol bestSoFar = typeNotFound;
|
|
PackageSymbol pack = null;
|
|
if ((kind & PCK) != 0) {
|
|
pack = reader.enterPackage(fullname);
|
|
if (pack.exists()) return pack;
|
|
}
|
|
if ((kind & TYP) != 0) {
|
|
Symbol sym = loadClass(env, fullname);
|
|
if (sym.exists()) {
|
|
// don't allow programs to use flatnames
|
|
if (name == sym.name) return sym;
|
|
}
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
return (pack != null) ? pack : bestSoFar;
|
|
}
|
|
|
|
/** Find an identifier among the members of a given type `site'.
|
|
* @param env The current environment.
|
|
* @param site The type containing the symbol to be found.
|
|
* @param name The identifier's name.
|
|
* @param kind Indicates the possible symbol kinds
|
|
* (a subset of VAL, TYP).
|
|
*/
|
|
Symbol findIdentInType(Env<AttrContext> env, Type site,
|
|
Name name, int kind) {
|
|
Symbol bestSoFar = typeNotFound;
|
|
Symbol sym;
|
|
if ((kind & VAR) != 0) {
|
|
sym = findField(env, site, name, site.tsym);
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
|
|
if ((kind & TYP) != 0) {
|
|
sym = findMemberType(env, site, name, site.tsym);
|
|
if (sym.exists()) return sym;
|
|
else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
/* ***************************************************************************
|
|
* Access checking
|
|
* The following methods convert ResolveErrors to ErrorSymbols, issuing
|
|
* an error message in the process
|
|
****************************************************************************/
|
|
|
|
/** If `sym' is a bad symbol: report error and return errSymbol
|
|
* else pass through unchanged,
|
|
* additional arguments duplicate what has been used in trying to find the
|
|
* symbol {@literal (--> flyweight pattern)}. This improves performance since we
|
|
* expect misses to happen frequently.
|
|
*
|
|
* @param sym The symbol that was found, or a ResolveError.
|
|
* @param pos The position to use for error reporting.
|
|
* @param location The symbol the served as a context for this lookup
|
|
* @param site The original type from where the selection took place.
|
|
* @param name The symbol's name.
|
|
* @param qualified Did we get here through a qualified expression resolution?
|
|
* @param argtypes The invocation's value arguments,
|
|
* if we looked for a method.
|
|
* @param typeargtypes The invocation's type arguments,
|
|
* if we looked for a method.
|
|
* @param logResolveHelper helper class used to log resolve errors
|
|
*/
|
|
Symbol accessInternal(Symbol sym,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
boolean qualified,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
LogResolveHelper logResolveHelper) {
|
|
if (sym.kind >= AMBIGUOUS) {
|
|
ResolveError errSym = (ResolveError)sym.baseSymbol();
|
|
sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
|
|
argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
|
|
if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
|
|
logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
|
|
}
|
|
}
|
|
return sym;
|
|
}
|
|
|
|
/**
|
|
* Variant of the generalized access routine, to be used for generating method
|
|
* resolution diagnostics
|
|
*/
|
|
Symbol accessMethod(Symbol sym,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
boolean qualified,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
|
|
}
|
|
|
|
/** Same as original accessMethod(), but without location.
|
|
*/
|
|
Symbol accessMethod(Symbol sym,
|
|
DiagnosticPosition pos,
|
|
Type site,
|
|
Name name,
|
|
boolean qualified,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
|
|
}
|
|
|
|
/**
|
|
* Variant of the generalized access routine, to be used for generating variable,
|
|
* type resolution diagnostics
|
|
*/
|
|
Symbol accessBase(Symbol sym,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
boolean qualified) {
|
|
return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
|
|
}
|
|
|
|
/** Same as original accessBase(), but without location.
|
|
*/
|
|
Symbol accessBase(Symbol sym,
|
|
DiagnosticPosition pos,
|
|
Type site,
|
|
Name name,
|
|
boolean qualified) {
|
|
return accessBase(sym, pos, site.tsym, site, name, qualified);
|
|
}
|
|
|
|
interface LogResolveHelper {
|
|
boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
|
|
List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
|
|
}
|
|
|
|
LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
|
|
public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
|
|
return !site.isErroneous();
|
|
}
|
|
public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
|
|
return argtypes;
|
|
}
|
|
};
|
|
|
|
LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
|
|
public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
|
|
return !site.isErroneous() &&
|
|
!Type.isErroneous(argtypes) &&
|
|
(typeargtypes == null || !Type.isErroneous(typeargtypes));
|
|
}
|
|
public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
|
|
return (syms.operatorNames.contains(name)) ?
|
|
argtypes :
|
|
Type.map(argtypes, new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
|
|
}
|
|
};
|
|
|
|
class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
|
|
|
|
public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
|
|
deferredAttr.super(mode, msym, step);
|
|
}
|
|
|
|
@Override
|
|
protected Type typeOf(DeferredType dt) {
|
|
Type res = super.typeOf(dt);
|
|
if (!res.isErroneous()) {
|
|
switch (TreeInfo.skipParens(dt.tree).getTag()) {
|
|
case LAMBDA:
|
|
case REFERENCE:
|
|
return dt;
|
|
case CONDEXPR:
|
|
return res == Type.recoveryType ?
|
|
dt : res;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/** Check that sym is not an abstract method.
|
|
*/
|
|
void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
|
|
if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
|
|
log.error(pos, "abstract.cant.be.accessed.directly",
|
|
kindName(sym), sym, sym.location());
|
|
}
|
|
|
|
/* ***************************************************************************
|
|
* Debugging
|
|
****************************************************************************/
|
|
|
|
/** print all scopes starting with scope s and proceeding outwards.
|
|
* used for debugging.
|
|
*/
|
|
public void printscopes(Scope s) {
|
|
while (s != null) {
|
|
if (s.owner != null)
|
|
System.err.print(s.owner + ": ");
|
|
for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
|
|
if ((e.sym.flags() & ABSTRACT) != 0)
|
|
System.err.print("abstract ");
|
|
System.err.print(e.sym + " ");
|
|
}
|
|
System.err.println();
|
|
s = s.next;
|
|
}
|
|
}
|
|
|
|
void printscopes(Env<AttrContext> env) {
|
|
while (env.outer != null) {
|
|
System.err.println("------------------------------");
|
|
printscopes(env.info.scope);
|
|
env = env.outer;
|
|
}
|
|
}
|
|
|
|
public void printscopes(Type t) {
|
|
while (t.hasTag(CLASS)) {
|
|
printscopes(t.tsym.members());
|
|
t = types.supertype(t);
|
|
}
|
|
}
|
|
|
|
/* ***************************************************************************
|
|
* Name resolution
|
|
* Naming conventions are as for symbol lookup
|
|
* Unlike the find... methods these methods will report access errors
|
|
****************************************************************************/
|
|
|
|
/** Resolve an unqualified (non-method) identifier.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the identifier use.
|
|
* @param name The identifier's name.
|
|
* @param kind The set of admissible symbol kinds for the identifier.
|
|
*/
|
|
Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Name name, int kind) {
|
|
return accessBase(
|
|
findIdent(env, name, kind),
|
|
pos, env.enclClass.sym.type, name, false);
|
|
}
|
|
|
|
/** Resolve an unqualified method identifier.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the method invocation.
|
|
* @param name The identifier's name.
|
|
* @param argtypes The types of the invocation's value arguments.
|
|
* @param typeargtypes The types of the invocation's type arguments.
|
|
*/
|
|
Symbol resolveMethod(DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
|
|
new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
|
|
@Override
|
|
Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return findFun(env, name, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(),
|
|
phase.isVarargsRequired());
|
|
}});
|
|
}
|
|
|
|
/** Resolve a qualified method identifier
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the method invocation.
|
|
* @param site The type of the qualifying expression, in which
|
|
* identifier is searched.
|
|
* @param name The identifier's name.
|
|
* @param argtypes The types of the invocation's value arguments.
|
|
* @param typeargtypes The types of the invocation's type arguments.
|
|
*/
|
|
Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Type site, Name name, List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
|
|
}
|
|
Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Symbol location, Type site, Name name, List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
|
|
}
|
|
private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
|
|
DiagnosticPosition pos, Env<AttrContext> env,
|
|
Symbol location, Type site, Name name, List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
|
|
@Override
|
|
Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return findMethod(env, site, name, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(),
|
|
phase.isVarargsRequired(), false);
|
|
}
|
|
@Override
|
|
Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
|
|
if (sym.kind >= AMBIGUOUS) {
|
|
sym = super.access(env, pos, location, sym);
|
|
} else if (allowMethodHandles) {
|
|
MethodSymbol msym = (MethodSymbol)sym;
|
|
if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
|
|
return findPolymorphicSignatureInstance(env, sym, argtypes);
|
|
}
|
|
}
|
|
return sym;
|
|
}
|
|
});
|
|
}
|
|
|
|
/** Find or create an implicit method of exactly the given type (after erasure).
|
|
* Searches in a side table, not the main scope of the site.
|
|
* This emulates the lookup process required by JSR 292 in JVM.
|
|
* @param env Attribution environment
|
|
* @param spMethod signature polymorphic method - i.e. MH.invokeExact
|
|
* @param argtypes The required argument types
|
|
*/
|
|
Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
|
|
final Symbol spMethod,
|
|
List<Type> argtypes) {
|
|
Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
|
|
(MethodSymbol)spMethod, currentResolutionContext, argtypes);
|
|
for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
|
|
if (types.isSameType(mtype, sym.type)) {
|
|
return sym;
|
|
}
|
|
}
|
|
|
|
// create the desired method
|
|
long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
|
|
Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
|
|
@Override
|
|
public Symbol baseSymbol() {
|
|
return spMethod;
|
|
}
|
|
};
|
|
if (!mtype.isErroneous()) { // Cache only if kosher.
|
|
polymorphicSignatureScope.enter(msym);
|
|
}
|
|
return msym;
|
|
}
|
|
|
|
/** Resolve a qualified method identifier, throw a fatal error if not
|
|
* found.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the method invocation.
|
|
* @param site The type of the qualifying expression, in which
|
|
* identifier is searched.
|
|
* @param name The identifier's name.
|
|
* @param argtypes The types of the invocation's value arguments.
|
|
* @param typeargtypes The types of the invocation's type arguments.
|
|
*/
|
|
public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Type site, Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
MethodResolutionContext resolveContext = new MethodResolutionContext();
|
|
resolveContext.internalResolution = true;
|
|
Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
|
|
site, name, argtypes, typeargtypes);
|
|
if (sym.kind == MTH) return (MethodSymbol)sym;
|
|
else throw new FatalError(
|
|
diags.fragment("fatal.err.cant.locate.meth",
|
|
name));
|
|
}
|
|
|
|
/** Resolve constructor.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the constructor invocation.
|
|
* @param site The type of class for which a constructor is searched.
|
|
* @param argtypes The types of the constructor invocation's value
|
|
* arguments.
|
|
* @param typeargtypes The types of the constructor invocation's type
|
|
* arguments.
|
|
*/
|
|
Symbol resolveConstructor(DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
Type site,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
|
|
}
|
|
|
|
private Symbol resolveConstructor(MethodResolutionContext resolveContext,
|
|
final DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
Type site,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
|
|
@Override
|
|
Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return findConstructor(pos, env, site, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(),
|
|
phase.isVarargsRequired());
|
|
}
|
|
});
|
|
}
|
|
|
|
/** Resolve a constructor, throw a fatal error if not found.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the method invocation.
|
|
* @param site The type to be constructed.
|
|
* @param argtypes The types of the invocation's value arguments.
|
|
* @param typeargtypes The types of the invocation's type arguments.
|
|
*/
|
|
public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Type site,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
MethodResolutionContext resolveContext = new MethodResolutionContext();
|
|
resolveContext.internalResolution = true;
|
|
Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
|
|
if (sym.kind == MTH) return (MethodSymbol)sym;
|
|
else throw new FatalError(
|
|
diags.fragment("fatal.err.cant.locate.ctor", site));
|
|
}
|
|
|
|
Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
|
|
Type site, List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
boolean allowBoxing,
|
|
boolean useVarargs) {
|
|
Symbol sym = findMethod(env, site,
|
|
names.init, argtypes,
|
|
typeargtypes, allowBoxing,
|
|
useVarargs, false);
|
|
chk.checkDeprecated(pos, env.info.scope.owner, sym);
|
|
return sym;
|
|
}
|
|
|
|
/** Resolve constructor using diamond inference.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the constructor invocation.
|
|
* @param site The type of class for which a constructor is searched.
|
|
* The scope of this class has been touched in attribution.
|
|
* @param argtypes The types of the constructor invocation's value
|
|
* arguments.
|
|
* @param typeargtypes The types of the constructor invocation's type
|
|
* arguments.
|
|
*/
|
|
Symbol resolveDiamond(DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
Type site,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
|
|
new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
|
|
@Override
|
|
Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return findDiamond(env, site, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(),
|
|
phase.isVarargsRequired());
|
|
}
|
|
@Override
|
|
Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
|
|
if (sym.kind >= AMBIGUOUS) {
|
|
if (sym.kind != WRONG_MTH && sym.kind != WRONG_MTHS) {
|
|
sym = super.access(env, pos, location, sym);
|
|
} else {
|
|
final JCDiagnostic details = sym.kind == WRONG_MTH ?
|
|
((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
|
|
null;
|
|
sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
|
|
@Override
|
|
JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
|
|
Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
|
|
String key = details == null ?
|
|
"cant.apply.diamond" :
|
|
"cant.apply.diamond.1";
|
|
return diags.create(dkind, log.currentSource(), pos, key,
|
|
diags.fragment("diamond", site.tsym), details);
|
|
}
|
|
};
|
|
sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
|
|
env.info.pendingResolutionPhase = currentResolutionContext.step;
|
|
}
|
|
}
|
|
return sym;
|
|
}});
|
|
}
|
|
|
|
/** This method scans all the constructor symbol in a given class scope -
|
|
* assuming that the original scope contains a constructor of the kind:
|
|
* {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
|
|
* a method check is executed against the modified constructor type:
|
|
* {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
|
|
* inference. The inferred return type of the synthetic constructor IS
|
|
* the inferred type for the diamond operator.
|
|
*/
|
|
private Symbol findDiamond(Env<AttrContext> env,
|
|
Type site,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
boolean allowBoxing,
|
|
boolean useVarargs) {
|
|
Symbol bestSoFar = methodNotFound;
|
|
for (Scope.Entry e = site.tsym.members().lookup(names.init);
|
|
e.scope != null;
|
|
e = e.next()) {
|
|
final Symbol sym = e.sym;
|
|
//- System.out.println(" e " + e.sym);
|
|
if (sym.kind == MTH &&
|
|
(sym.flags_field & SYNTHETIC) == 0) {
|
|
List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
|
|
((ForAll)sym.type).tvars :
|
|
List.<Type>nil();
|
|
Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
|
|
types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
|
|
MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
|
|
@Override
|
|
public Symbol baseSymbol() {
|
|
return sym;
|
|
}
|
|
};
|
|
bestSoFar = selectBest(env, site, argtypes, typeargtypes,
|
|
newConstr,
|
|
bestSoFar,
|
|
allowBoxing,
|
|
useVarargs,
|
|
false);
|
|
}
|
|
}
|
|
return bestSoFar;
|
|
}
|
|
|
|
|
|
|
|
/** Resolve operator.
|
|
* @param pos The position to use for error reporting.
|
|
* @param optag The tag of the operation tree.
|
|
* @param env The environment current at the operation.
|
|
* @param argtypes The types of the operands.
|
|
*/
|
|
Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
|
|
Env<AttrContext> env, List<Type> argtypes) {
|
|
MethodResolutionContext prevResolutionContext = currentResolutionContext;
|
|
try {
|
|
currentResolutionContext = new MethodResolutionContext();
|
|
Name name = treeinfo.operatorName(optag);
|
|
return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
|
|
new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
|
|
@Override
|
|
Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return findMethod(env, site, name, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(),
|
|
phase.isVarargsRequired(), true);
|
|
}
|
|
@Override
|
|
Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
|
|
return accessMethod(sym, pos, env.enclClass.sym.type, name,
|
|
false, argtypes, null);
|
|
}
|
|
});
|
|
} finally {
|
|
currentResolutionContext = prevResolutionContext;
|
|
}
|
|
}
|
|
|
|
/** Resolve operator.
|
|
* @param pos The position to use for error reporting.
|
|
* @param optag The tag of the operation tree.
|
|
* @param env The environment current at the operation.
|
|
* @param arg The type of the operand.
|
|
*/
|
|
Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
|
|
return resolveOperator(pos, optag, env, List.of(arg));
|
|
}
|
|
|
|
/** Resolve binary operator.
|
|
* @param pos The position to use for error reporting.
|
|
* @param optag The tag of the operation tree.
|
|
* @param env The environment current at the operation.
|
|
* @param left The types of the left operand.
|
|
* @param right The types of the right operand.
|
|
*/
|
|
Symbol resolveBinaryOperator(DiagnosticPosition pos,
|
|
JCTree.Tag optag,
|
|
Env<AttrContext> env,
|
|
Type left,
|
|
Type right) {
|
|
return resolveOperator(pos, optag, env, List.of(left, right));
|
|
}
|
|
|
|
Symbol getMemberReference(DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
JCMemberReference referenceTree,
|
|
Type site,
|
|
Name name) {
|
|
|
|
site = types.capture(site);
|
|
|
|
ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
|
|
referenceTree, site, name, List.<Type>nil(), null, VARARITY);
|
|
|
|
Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
|
|
Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
|
|
nilMethodCheck, lookupHelper);
|
|
|
|
env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
|
|
|
|
return sym;
|
|
}
|
|
|
|
ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
MethodResolutionPhase maxPhase) {
|
|
ReferenceLookupHelper result;
|
|
if (!name.equals(names.init)) {
|
|
//method reference
|
|
result =
|
|
new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
|
|
} else {
|
|
if (site.hasTag(ARRAY)) {
|
|
//array constructor reference
|
|
result =
|
|
new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
|
|
} else {
|
|
//class constructor reference
|
|
result =
|
|
new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Symbol resolveMemberReferenceByArity(Env<AttrContext> env,
|
|
JCMemberReference referenceTree,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
InferenceContext inferenceContext) {
|
|
|
|
boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
|
|
site = types.capture(site);
|
|
|
|
ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
|
|
referenceTree, site, name, argtypes, null, VARARITY);
|
|
//step 1 - bound lookup
|
|
Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
|
|
Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym,
|
|
arityMethodCheck, boundLookupHelper);
|
|
if (isStaticSelector &&
|
|
!name.equals(names.init) &&
|
|
!boundSym.isStatic() &&
|
|
boundSym.kind < ERRONEOUS) {
|
|
boundSym = methodNotFound;
|
|
}
|
|
|
|
//step 2 - unbound lookup
|
|
Symbol unboundSym = methodNotFound;
|
|
ReferenceLookupHelper unboundLookupHelper = null;
|
|
Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
|
|
if (isStaticSelector) {
|
|
unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
|
|
unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym,
|
|
arityMethodCheck, unboundLookupHelper);
|
|
if (unboundSym.isStatic() &&
|
|
unboundSym.kind < ERRONEOUS) {
|
|
unboundSym = methodNotFound;
|
|
}
|
|
}
|
|
|
|
//merge results
|
|
Symbol bestSym = choose(boundSym, unboundSym);
|
|
env.info.pendingResolutionPhase = bestSym == unboundSym ?
|
|
unboundEnv.info.pendingResolutionPhase :
|
|
boundEnv.info.pendingResolutionPhase;
|
|
|
|
return bestSym;
|
|
}
|
|
|
|
/**
|
|
* Resolution of member references is typically done as a single
|
|
* overload resolution step, where the argument types A are inferred from
|
|
* the target functional descriptor.
|
|
*
|
|
* If the member reference is a method reference with a type qualifier,
|
|
* a two-step lookup process is performed. The first step uses the
|
|
* expected argument list A, while the second step discards the first
|
|
* type from A (which is treated as a receiver type).
|
|
*
|
|
* There are two cases in which inference is performed: (i) if the member
|
|
* reference is a constructor reference and the qualifier type is raw - in
|
|
* which case diamond inference is used to infer a parameterization for the
|
|
* type qualifier; (ii) if the member reference is an unbound reference
|
|
* where the type qualifier is raw - in that case, during the unbound lookup
|
|
* the receiver argument type is used to infer an instantiation for the raw
|
|
* qualifier type.
|
|
*
|
|
* When a multi-step resolution process is exploited, it is an error
|
|
* if two candidates are found (ambiguity).
|
|
*
|
|
* This routine returns a pair (T,S), where S is the member reference symbol,
|
|
* and T is the type of the class in which S is defined. This is necessary as
|
|
* the type T might be dynamically inferred (i.e. if constructor reference
|
|
* has a raw qualifier).
|
|
*/
|
|
Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
|
|
JCMemberReference referenceTree,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes,
|
|
MethodCheck methodCheck,
|
|
InferenceContext inferenceContext,
|
|
AttrMode mode) {
|
|
|
|
site = types.capture(site);
|
|
ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
|
|
referenceTree, site, name, argtypes, typeargtypes, VARARITY);
|
|
|
|
//step 1 - bound lookup
|
|
Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
|
|
Symbol origBoundSym;
|
|
boolean staticErrorForBound = false;
|
|
MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
|
|
boundSearchResolveContext.methodCheck = methodCheck;
|
|
Symbol boundSym = origBoundSym = lookupMethod(boundEnv, env.tree.pos(),
|
|
site.tsym, boundSearchResolveContext, boundLookupHelper);
|
|
SearchResultKind boundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
|
|
boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
|
|
boolean shouldCheckForStaticness = isStaticSelector &&
|
|
referenceTree.getMode() == ReferenceMode.INVOKE;
|
|
if (boundSym.kind != WRONG_MTHS && boundSym.kind != WRONG_MTH) {
|
|
if (shouldCheckForStaticness) {
|
|
if (!boundSym.isStatic()) {
|
|
staticErrorForBound = true;
|
|
if (hasAnotherApplicableMethod(
|
|
boundSearchResolveContext, boundSym, true)) {
|
|
boundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
|
|
} else {
|
|
boundSearchResultKind = SearchResultKind.BAD_MATCH;
|
|
if (boundSym.kind < ERRONEOUS) {
|
|
boundSym = methodWithCorrectStaticnessNotFound;
|
|
}
|
|
}
|
|
} else if (boundSym.kind < ERRONEOUS) {
|
|
boundSearchResultKind = SearchResultKind.GOOD_MATCH;
|
|
}
|
|
}
|
|
}
|
|
|
|
//step 2 - unbound lookup
|
|
Symbol origUnboundSym = null;
|
|
Symbol unboundSym = methodNotFound;
|
|
ReferenceLookupHelper unboundLookupHelper = null;
|
|
Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
|
|
SearchResultKind unboundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
|
|
boolean staticErrorForUnbound = false;
|
|
if (isStaticSelector) {
|
|
unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
|
|
MethodResolutionContext unboundSearchResolveContext =
|
|
new MethodResolutionContext();
|
|
unboundSearchResolveContext.methodCheck = methodCheck;
|
|
unboundSym = origUnboundSym = lookupMethod(unboundEnv, env.tree.pos(),
|
|
site.tsym, unboundSearchResolveContext, unboundLookupHelper);
|
|
|
|
if (unboundSym.kind != WRONG_MTH && unboundSym.kind != WRONG_MTHS) {
|
|
if (shouldCheckForStaticness) {
|
|
if (unboundSym.isStatic()) {
|
|
staticErrorForUnbound = true;
|
|
if (hasAnotherApplicableMethod(
|
|
unboundSearchResolveContext, unboundSym, false)) {
|
|
unboundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
|
|
} else {
|
|
unboundSearchResultKind = SearchResultKind.BAD_MATCH;
|
|
if (unboundSym.kind < ERRONEOUS) {
|
|
unboundSym = methodWithCorrectStaticnessNotFound;
|
|
}
|
|
}
|
|
} else if (unboundSym.kind < ERRONEOUS) {
|
|
unboundSearchResultKind = SearchResultKind.GOOD_MATCH;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//merge results
|
|
Pair<Symbol, ReferenceLookupHelper> res;
|
|
Symbol bestSym = choose(boundSym, unboundSym);
|
|
if (bestSym.kind < ERRONEOUS && (staticErrorForBound || staticErrorForUnbound)) {
|
|
if (staticErrorForBound) {
|
|
boundSym = methodWithCorrectStaticnessNotFound;
|
|
}
|
|
if (staticErrorForUnbound) {
|
|
unboundSym = methodWithCorrectStaticnessNotFound;
|
|
}
|
|
bestSym = choose(boundSym, unboundSym);
|
|
}
|
|
if (bestSym == methodWithCorrectStaticnessNotFound && mode == AttrMode.CHECK) {
|
|
Symbol symToPrint = origBoundSym;
|
|
String errorFragmentToPrint = "non-static.cant.be.ref";
|
|
if (staticErrorForBound && staticErrorForUnbound) {
|
|
if (unboundSearchResultKind == SearchResultKind.BAD_MATCH_MORE_SPECIFIC) {
|
|
symToPrint = origUnboundSym;
|
|
errorFragmentToPrint = "static.method.in.unbound.lookup";
|
|
}
|
|
} else {
|
|
if (!staticErrorForBound) {
|
|
symToPrint = origUnboundSym;
|
|
errorFragmentToPrint = "static.method.in.unbound.lookup";
|
|
}
|
|
}
|
|
log.error(referenceTree.expr.pos(), "invalid.mref",
|
|
Kinds.kindName(referenceTree.getMode()),
|
|
diags.fragment(errorFragmentToPrint,
|
|
Kinds.kindName(symToPrint), symToPrint));
|
|
}
|
|
res = new Pair<>(bestSym,
|
|
bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
|
|
env.info.pendingResolutionPhase = bestSym == unboundSym ?
|
|
unboundEnv.info.pendingResolutionPhase :
|
|
boundEnv.info.pendingResolutionPhase;
|
|
|
|
return res;
|
|
}
|
|
|
|
enum SearchResultKind {
|
|
GOOD_MATCH, //type I
|
|
BAD_MATCH_MORE_SPECIFIC, //type II
|
|
BAD_MATCH, //type III
|
|
NOT_APPLICABLE_MATCH //type IV
|
|
}
|
|
|
|
boolean hasAnotherApplicableMethod(MethodResolutionContext resolutionContext,
|
|
Symbol bestSoFar, boolean staticMth) {
|
|
for (Candidate c : resolutionContext.candidates) {
|
|
if (resolutionContext.step != c.step ||
|
|
!c.isApplicable() ||
|
|
c.sym == bestSoFar) {
|
|
continue;
|
|
} else {
|
|
if (c.sym.isStatic() == staticMth) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//where
|
|
private Symbol choose(Symbol boundSym, Symbol unboundSym) {
|
|
if (lookupSuccess(boundSym) && lookupSuccess(unboundSym)) {
|
|
return ambiguityError(boundSym, unboundSym);
|
|
} else if (lookupSuccess(boundSym) ||
|
|
(canIgnore(unboundSym) && !canIgnore(boundSym))) {
|
|
return boundSym;
|
|
} else if (lookupSuccess(unboundSym) ||
|
|
(canIgnore(boundSym) && !canIgnore(unboundSym))) {
|
|
return unboundSym;
|
|
} else {
|
|
return boundSym;
|
|
}
|
|
}
|
|
|
|
private boolean lookupSuccess(Symbol s) {
|
|
return s.kind == MTH || s.kind == AMBIGUOUS;
|
|
}
|
|
|
|
private boolean canIgnore(Symbol s) {
|
|
switch (s.kind) {
|
|
case ABSENT_MTH:
|
|
return true;
|
|
case WRONG_MTH:
|
|
InapplicableSymbolError errSym =
|
|
(InapplicableSymbolError)s.baseSymbol();
|
|
return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
|
|
.matches(errSym.errCandidate().snd);
|
|
case WRONG_MTHS:
|
|
InapplicableSymbolsError errSyms =
|
|
(InapplicableSymbolsError)s.baseSymbol();
|
|
return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
|
|
case WRONG_STATICNESS:
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper for defining custom method-like lookup logic; a lookup helper
|
|
* provides hooks for (i) the actual lookup logic and (ii) accessing the
|
|
* lookup result (this step might result in compiler diagnostics to be generated)
|
|
*/
|
|
abstract class LookupHelper {
|
|
|
|
/** name of the symbol to lookup */
|
|
Name name;
|
|
|
|
/** location in which the lookup takes place */
|
|
Type site;
|
|
|
|
/** actual types used during the lookup */
|
|
List<Type> argtypes;
|
|
|
|
/** type arguments used during the lookup */
|
|
List<Type> typeargtypes;
|
|
|
|
/** Max overload resolution phase handled by this helper */
|
|
MethodResolutionPhase maxPhase;
|
|
|
|
LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
this.name = name;
|
|
this.site = site;
|
|
this.argtypes = argtypes;
|
|
this.typeargtypes = typeargtypes;
|
|
this.maxPhase = maxPhase;
|
|
}
|
|
|
|
/**
|
|
* Should lookup stop at given phase with given result
|
|
*/
|
|
final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
|
|
return phase.ordinal() > maxPhase.ordinal() ||
|
|
sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
|
|
}
|
|
|
|
/**
|
|
* Search for a symbol under a given overload resolution phase - this method
|
|
* is usually called several times, once per each overload resolution phase
|
|
*/
|
|
abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
|
|
|
|
/**
|
|
* Dump overload resolution info
|
|
*/
|
|
void debug(DiagnosticPosition pos, Symbol sym) {
|
|
//do nothing
|
|
}
|
|
|
|
/**
|
|
* Validate the result of the lookup
|
|
*/
|
|
abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
|
|
}
|
|
|
|
abstract class BasicLookupHelper extends LookupHelper {
|
|
|
|
BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
|
|
this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
|
|
}
|
|
|
|
BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
super(name, site, argtypes, typeargtypes, maxPhase);
|
|
}
|
|
|
|
@Override
|
|
final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
Symbol sym = doLookup(env, phase);
|
|
if (sym.kind == AMBIGUOUS) {
|
|
AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
|
|
sym = a_err.mergeAbstracts(site);
|
|
}
|
|
return sym;
|
|
}
|
|
|
|
abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
|
|
|
|
@Override
|
|
Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
|
|
if (sym.kind >= AMBIGUOUS) {
|
|
//if nothing is found return the 'first' error
|
|
sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
|
|
}
|
|
return sym;
|
|
}
|
|
|
|
@Override
|
|
void debug(DiagnosticPosition pos, Symbol sym) {
|
|
reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper class for member reference lookup. A reference lookup helper
|
|
* defines the basic logic for member reference lookup; a method gives
|
|
* access to an 'unbound' helper used to perform an unbound member
|
|
* reference lookup.
|
|
*/
|
|
abstract class ReferenceLookupHelper extends LookupHelper {
|
|
|
|
/** The member reference tree */
|
|
JCMemberReference referenceTree;
|
|
|
|
ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
|
|
List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
super(name, site, argtypes, typeargtypes, maxPhase);
|
|
this.referenceTree = referenceTree;
|
|
}
|
|
|
|
/**
|
|
* Returns an unbound version of this lookup helper. By default, this
|
|
* method returns an dummy lookup helper.
|
|
*/
|
|
ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
|
|
//dummy loopkup helper that always return 'methodNotFound'
|
|
return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
|
|
@Override
|
|
ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
|
|
return this;
|
|
}
|
|
@Override
|
|
Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return methodNotFound;
|
|
}
|
|
@Override
|
|
ReferenceKind referenceKind(Symbol sym) {
|
|
Assert.error();
|
|
return null;
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Get the kind of the member reference
|
|
*/
|
|
abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
|
|
|
|
Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
|
|
if (sym.kind == AMBIGUOUS) {
|
|
AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
|
|
sym = a_err.mergeAbstracts(site);
|
|
}
|
|
//skip error reporting
|
|
return sym;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper class for method reference lookup. The lookup logic is based
|
|
* upon Resolve.findMethod; in certain cases, this helper class has a
|
|
* corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
|
|
* In such cases, non-static lookup results are thrown away.
|
|
*/
|
|
class MethodReferenceLookupHelper extends ReferenceLookupHelper {
|
|
|
|
MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
|
|
List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
|
|
}
|
|
|
|
@Override
|
|
final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
return findMethod(env, site, name, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
|
|
}
|
|
|
|
@Override
|
|
ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
|
|
if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
|
|
argtypes.nonEmpty() &&
|
|
(argtypes.head.hasTag(NONE) ||
|
|
types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
|
|
return new UnboundMethodReferenceLookupHelper(referenceTree, name,
|
|
site, argtypes, typeargtypes, maxPhase);
|
|
} else {
|
|
return super.unboundLookup(inferenceContext);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
ReferenceKind referenceKind(Symbol sym) {
|
|
if (sym.isStatic()) {
|
|
return ReferenceKind.STATIC;
|
|
} else {
|
|
Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
|
|
return selName != null && selName == names._super ?
|
|
ReferenceKind.SUPER :
|
|
ReferenceKind.BOUND;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper class for unbound method reference lookup. Essentially the same
|
|
* as the basic method reference lookup helper; main difference is that static
|
|
* lookup results are thrown away. If qualifier type is raw, an attempt to
|
|
* infer a parameterized type is made using the first actual argument (that
|
|
* would otherwise be ignored during the lookup).
|
|
*/
|
|
class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
|
|
|
|
UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
|
|
List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
|
|
if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
|
|
Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
|
|
this.site = types.capture(asSuperSite);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
|
|
return this;
|
|
}
|
|
|
|
@Override
|
|
ReferenceKind referenceKind(Symbol sym) {
|
|
return ReferenceKind.UNBOUND;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper class for array constructor lookup; an array constructor lookup
|
|
* is simulated by looking up a method that returns the array type specified
|
|
* as qualifier, and that accepts a single int parameter (size of the array).
|
|
*/
|
|
class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
|
|
|
|
ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
|
|
List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
|
|
}
|
|
|
|
@Override
|
|
protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
Scope sc = new Scope(syms.arrayClass);
|
|
MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
|
|
arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
|
|
sc.enter(arrayConstr);
|
|
return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
|
|
}
|
|
|
|
@Override
|
|
ReferenceKind referenceKind(Symbol sym) {
|
|
return ReferenceKind.ARRAY_CTOR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper class for constructor reference lookup. The lookup logic is based
|
|
* upon either Resolve.findMethod or Resolve.findDiamond - depending on
|
|
* whether the constructor reference needs diamond inference (this is the case
|
|
* if the qualifier type is raw). A special erroneous symbol is returned
|
|
* if the lookup returns the constructor of an inner class and there's no
|
|
* enclosing instance in scope.
|
|
*/
|
|
class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
|
|
|
|
boolean needsInference;
|
|
|
|
ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
|
|
List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
|
|
super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
|
|
if (site.isRaw()) {
|
|
this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
|
|
needsInference = true;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
|
|
Symbol sym = needsInference ?
|
|
findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
|
|
findMethod(env, site, name, argtypes, typeargtypes,
|
|
phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
|
|
return sym.kind != MTH ||
|
|
site.getEnclosingType().hasTag(NONE) ||
|
|
hasEnclosingInstance(env, site) ?
|
|
sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
|
|
@Override
|
|
JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
"cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
|
|
}
|
|
};
|
|
}
|
|
|
|
@Override
|
|
ReferenceKind referenceKind(Symbol sym) {
|
|
return site.getEnclosingType().hasTag(NONE) ?
|
|
ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Main overload resolution routine. On each overload resolution step, a
|
|
* lookup helper class is used to perform the method/constructor lookup;
|
|
* at the end of the lookup, the helper is used to validate the results
|
|
* (this last step might trigger overload resolution diagnostics).
|
|
*/
|
|
Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
|
|
MethodResolutionContext resolveContext = new MethodResolutionContext();
|
|
resolveContext.methodCheck = methodCheck;
|
|
return lookupMethod(env, pos, location, resolveContext, lookupHelper);
|
|
}
|
|
|
|
Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
|
|
MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
|
|
MethodResolutionContext prevResolutionContext = currentResolutionContext;
|
|
try {
|
|
Symbol bestSoFar = methodNotFound;
|
|
currentResolutionContext = resolveContext;
|
|
for (MethodResolutionPhase phase : methodResolutionSteps) {
|
|
if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
|
|
lookupHelper.shouldStop(bestSoFar, phase)) break;
|
|
MethodResolutionPhase prevPhase = currentResolutionContext.step;
|
|
Symbol prevBest = bestSoFar;
|
|
currentResolutionContext.step = phase;
|
|
Symbol sym = lookupHelper.lookup(env, phase);
|
|
lookupHelper.debug(pos, sym);
|
|
bestSoFar = phase.mergeResults(bestSoFar, sym);
|
|
env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
|
|
}
|
|
return lookupHelper.access(env, pos, location, bestSoFar);
|
|
} finally {
|
|
currentResolutionContext = prevResolutionContext;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Resolve `c.name' where name == this or name == super.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the expression.
|
|
* @param c The qualifier.
|
|
* @param name The identifier's name.
|
|
*/
|
|
Symbol resolveSelf(DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
TypeSymbol c,
|
|
Name name) {
|
|
Env<AttrContext> env1 = env;
|
|
boolean staticOnly = false;
|
|
while (env1.outer != null) {
|
|
if (isStatic(env1)) staticOnly = true;
|
|
if (env1.enclClass.sym == c) {
|
|
Symbol sym = env1.info.scope.lookup(name).sym;
|
|
if (sym != null) {
|
|
if (staticOnly) sym = new StaticError(sym);
|
|
return accessBase(sym, pos, env.enclClass.sym.type,
|
|
name, true);
|
|
}
|
|
}
|
|
if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
|
|
env1 = env1.outer;
|
|
}
|
|
if (c.isInterface() &&
|
|
name == names._super && !isStatic(env) &&
|
|
types.isDirectSuperInterface(c, env.enclClass.sym)) {
|
|
//this might be a default super call if one of the superinterfaces is 'c'
|
|
for (Type t : pruneInterfaces(env.enclClass.type)) {
|
|
if (t.tsym == c) {
|
|
env.info.defaultSuperCallSite = t;
|
|
return new VarSymbol(0, names._super,
|
|
types.asSuper(env.enclClass.type, c), env.enclClass.sym);
|
|
}
|
|
}
|
|
//find a direct superinterface that is a subtype of 'c'
|
|
for (Type i : types.interfaces(env.enclClass.type)) {
|
|
if (i.tsym.isSubClass(c, types) && i.tsym != c) {
|
|
log.error(pos, "illegal.default.super.call", c,
|
|
diags.fragment("redundant.supertype", c, i));
|
|
return syms.errSymbol;
|
|
}
|
|
}
|
|
Assert.error();
|
|
}
|
|
log.error(pos, "not.encl.class", c);
|
|
return syms.errSymbol;
|
|
}
|
|
//where
|
|
private List<Type> pruneInterfaces(Type t) {
|
|
ListBuffer<Type> result = new ListBuffer<>();
|
|
for (Type t1 : types.interfaces(t)) {
|
|
boolean shouldAdd = true;
|
|
for (Type t2 : types.interfaces(t)) {
|
|
if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
|
|
shouldAdd = false;
|
|
}
|
|
}
|
|
if (shouldAdd) {
|
|
result.append(t1);
|
|
}
|
|
}
|
|
return result.toList();
|
|
}
|
|
|
|
|
|
/**
|
|
* Resolve `c.this' for an enclosing class c that contains the
|
|
* named member.
|
|
* @param pos The position to use for error reporting.
|
|
* @param env The environment current at the expression.
|
|
* @param member The member that must be contained in the result.
|
|
*/
|
|
Symbol resolveSelfContaining(DiagnosticPosition pos,
|
|
Env<AttrContext> env,
|
|
Symbol member,
|
|
boolean isSuperCall) {
|
|
Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
|
|
if (sym == null) {
|
|
log.error(pos, "encl.class.required", member);
|
|
return syms.errSymbol;
|
|
} else {
|
|
return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
|
|
}
|
|
}
|
|
|
|
boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
|
|
Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
|
|
return encl != null && encl.kind < ERRONEOUS;
|
|
}
|
|
|
|
private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
|
|
Symbol member,
|
|
boolean isSuperCall) {
|
|
Name name = names._this;
|
|
Env<AttrContext> env1 = isSuperCall ? env.outer : env;
|
|
boolean staticOnly = false;
|
|
if (env1 != null) {
|
|
while (env1 != null && env1.outer != null) {
|
|
if (isStatic(env1)) staticOnly = true;
|
|
if (env1.enclClass.sym.isSubClass(member.owner, types)) {
|
|
Symbol sym = env1.info.scope.lookup(name).sym;
|
|
if (sym != null) {
|
|
if (staticOnly) sym = new StaticError(sym);
|
|
return sym;
|
|
}
|
|
}
|
|
if ((env1.enclClass.sym.flags() & STATIC) != 0)
|
|
staticOnly = true;
|
|
env1 = env1.outer;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Resolve an appropriate implicit this instance for t's container.
|
|
* JLS 8.8.5.1 and 15.9.2
|
|
*/
|
|
Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
|
|
return resolveImplicitThis(pos, env, t, false);
|
|
}
|
|
|
|
Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
|
|
Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
|
|
? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
|
|
: resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
|
|
if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
|
|
log.error(pos, "cant.ref.before.ctor.called", "this");
|
|
return thisType;
|
|
}
|
|
|
|
/* ***************************************************************************
|
|
* ResolveError classes, indicating error situations when accessing symbols
|
|
****************************************************************************/
|
|
|
|
//used by TransTypes when checking target type of synthetic cast
|
|
public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
|
|
AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
|
|
logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
|
|
}
|
|
//where
|
|
private void logResolveError(ResolveError error,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
|
|
pos, location, site, name, argtypes, typeargtypes);
|
|
if (d != null) {
|
|
d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
|
|
log.report(d);
|
|
}
|
|
}
|
|
|
|
private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
|
|
|
|
public Object methodArguments(List<Type> argtypes) {
|
|
if (argtypes == null || argtypes.isEmpty()) {
|
|
return noArgs;
|
|
} else {
|
|
ListBuffer<Object> diagArgs = new ListBuffer<>();
|
|
for (Type t : argtypes) {
|
|
if (t.hasTag(DEFERRED)) {
|
|
diagArgs.append(((DeferredAttr.DeferredType)t).tree);
|
|
} else {
|
|
diagArgs.append(t);
|
|
}
|
|
}
|
|
return diagArgs;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Root class for resolution errors. Subclass of ResolveError
|
|
* represent a different kinds of resolution error - as such they must
|
|
* specify how they map into concrete compiler diagnostics.
|
|
*/
|
|
abstract class ResolveError extends Symbol {
|
|
|
|
/** The name of the kind of error, for debugging only. */
|
|
final String debugName;
|
|
|
|
ResolveError(int kind, String debugName) {
|
|
super(kind, 0, null, null, null);
|
|
this.debugName = debugName;
|
|
}
|
|
|
|
@Override
|
|
public <R, P> R accept(ElementVisitor<R, P> v, P p) {
|
|
throw new AssertionError();
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return debugName;
|
|
}
|
|
|
|
@Override
|
|
public boolean exists() {
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
public boolean isStatic() {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Create an external representation for this erroneous symbol to be
|
|
* used during attribution - by default this returns the symbol of a
|
|
* brand new error type which stores the original type found
|
|
* during resolution.
|
|
*
|
|
* @param name the name used during resolution
|
|
* @param location the location from which the symbol is accessed
|
|
*/
|
|
protected Symbol access(Name name, TypeSymbol location) {
|
|
return types.createErrorType(name, location, syms.errSymbol.type).tsym;
|
|
}
|
|
|
|
/**
|
|
* Create a diagnostic representing this resolution error.
|
|
*
|
|
* @param dkind The kind of the diagnostic to be created (e.g error).
|
|
* @param pos The position to be used for error reporting.
|
|
* @param site The original type from where the selection took place.
|
|
* @param name The name of the symbol to be resolved.
|
|
* @param argtypes The invocation's value arguments,
|
|
* if we looked for a method.
|
|
* @param typeargtypes The invocation's type arguments,
|
|
* if we looked for a method.
|
|
*/
|
|
abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes);
|
|
}
|
|
|
|
/**
|
|
* This class is the root class of all resolution errors caused by
|
|
* an invalid symbol being found during resolution.
|
|
*/
|
|
abstract class InvalidSymbolError extends ResolveError {
|
|
|
|
/** The invalid symbol found during resolution */
|
|
Symbol sym;
|
|
|
|
InvalidSymbolError(int kind, Symbol sym, String debugName) {
|
|
super(kind, debugName);
|
|
this.sym = sym;
|
|
}
|
|
|
|
@Override
|
|
public boolean exists() {
|
|
return true;
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return super.toString() + " wrongSym=" + sym;
|
|
}
|
|
|
|
@Override
|
|
public Symbol access(Name name, TypeSymbol location) {
|
|
if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
|
|
return types.createErrorType(name, location, sym.type).tsym;
|
|
else
|
|
return sym;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* InvalidSymbolError error class indicating that a symbol matching a
|
|
* given name does not exists in a given site.
|
|
*/
|
|
class SymbolNotFoundError extends ResolveError {
|
|
|
|
SymbolNotFoundError(int kind) {
|
|
this(kind, "symbol not found error");
|
|
}
|
|
|
|
SymbolNotFoundError(int kind, String debugName) {
|
|
super(kind, debugName);
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
argtypes = argtypes == null ? List.<Type>nil() : argtypes;
|
|
typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
|
|
if (name == names.error)
|
|
return null;
|
|
|
|
if (syms.operatorNames.contains(name)) {
|
|
boolean isUnaryOp = argtypes.size() == 1;
|
|
String key = argtypes.size() == 1 ?
|
|
"operator.cant.be.applied" :
|
|
"operator.cant.be.applied.1";
|
|
Type first = argtypes.head;
|
|
Type second = !isUnaryOp ? argtypes.tail.head : null;
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
key, name, first, second);
|
|
}
|
|
boolean hasLocation = false;
|
|
if (location == null) {
|
|
location = site.tsym;
|
|
}
|
|
if (!location.name.isEmpty()) {
|
|
if (location.kind == PCK && !site.tsym.exists()) {
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
"doesnt.exist", location);
|
|
}
|
|
hasLocation = !location.name.equals(names._this) &&
|
|
!location.name.equals(names._super);
|
|
}
|
|
boolean isConstructor = (kind == ABSENT_MTH || kind == WRONG_STATICNESS) &&
|
|
name == names.init;
|
|
KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
|
|
Name idname = isConstructor ? site.tsym.name : name;
|
|
String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
|
|
if (hasLocation) {
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
errKey, kindname, idname, //symbol kindname, name
|
|
typeargtypes, args(argtypes), //type parameters and arguments (if any)
|
|
getLocationDiag(location, site)); //location kindname, type
|
|
}
|
|
else {
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
errKey, kindname, idname, //symbol kindname, name
|
|
typeargtypes, args(argtypes)); //type parameters and arguments (if any)
|
|
}
|
|
}
|
|
//where
|
|
private Object args(List<Type> args) {
|
|
return args.isEmpty() ? args : methodArguments(args);
|
|
}
|
|
|
|
private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
|
|
String key = "cant.resolve";
|
|
String suffix = hasLocation ? ".location" : "";
|
|
switch (kindname) {
|
|
case METHOD:
|
|
case CONSTRUCTOR: {
|
|
suffix += ".args";
|
|
suffix += hasTypeArgs ? ".params" : "";
|
|
}
|
|
}
|
|
return key + suffix;
|
|
}
|
|
private JCDiagnostic getLocationDiag(Symbol location, Type site) {
|
|
if (location.kind == VAR) {
|
|
return diags.fragment("location.1",
|
|
kindName(location),
|
|
location,
|
|
location.type);
|
|
} else {
|
|
return diags.fragment("location",
|
|
typeKindName(site),
|
|
site,
|
|
null);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* InvalidSymbolError error class indicating that a given symbol
|
|
* (either a method, a constructor or an operand) is not applicable
|
|
* given an actual arguments/type argument list.
|
|
*/
|
|
class InapplicableSymbolError extends ResolveError {
|
|
|
|
protected MethodResolutionContext resolveContext;
|
|
|
|
InapplicableSymbolError(MethodResolutionContext context) {
|
|
this(WRONG_MTH, "inapplicable symbol error", context);
|
|
}
|
|
|
|
protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
|
|
super(kind, debugName);
|
|
this.resolveContext = context;
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
return super.toString();
|
|
}
|
|
|
|
@Override
|
|
public boolean exists() {
|
|
return true;
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
if (name == names.error)
|
|
return null;
|
|
|
|
if (syms.operatorNames.contains(name)) {
|
|
boolean isUnaryOp = argtypes.size() == 1;
|
|
String key = argtypes.size() == 1 ?
|
|
"operator.cant.be.applied" :
|
|
"operator.cant.be.applied.1";
|
|
Type first = argtypes.head;
|
|
Type second = !isUnaryOp ? argtypes.tail.head : null;
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
key, name, first, second);
|
|
}
|
|
else {
|
|
Pair<Symbol, JCDiagnostic> c = errCandidate();
|
|
if (compactMethodDiags) {
|
|
for (Map.Entry<Template, DiagnosticRewriter> _entry :
|
|
MethodResolutionDiagHelper.rewriters.entrySet()) {
|
|
if (_entry.getKey().matches(c.snd)) {
|
|
JCDiagnostic simpleDiag =
|
|
_entry.getValue().rewriteDiagnostic(diags, pos,
|
|
log.currentSource(), dkind, c.snd);
|
|
simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
|
|
return simpleDiag;
|
|
}
|
|
}
|
|
}
|
|
Symbol ws = c.fst.asMemberOf(site, types);
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
"cant.apply.symbol",
|
|
kindName(ws),
|
|
ws.name == names.init ? ws.owner.name : ws.name,
|
|
methodArguments(ws.type.getParameterTypes()),
|
|
methodArguments(argtypes),
|
|
kindName(ws.owner),
|
|
ws.owner.type,
|
|
c.snd);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public Symbol access(Name name, TypeSymbol location) {
|
|
return types.createErrorType(name, location, syms.errSymbol.type).tsym;
|
|
}
|
|
|
|
protected Pair<Symbol, JCDiagnostic> errCandidate() {
|
|
Candidate bestSoFar = null;
|
|
for (Candidate c : resolveContext.candidates) {
|
|
if (c.isApplicable()) continue;
|
|
bestSoFar = c;
|
|
}
|
|
Assert.checkNonNull(bestSoFar);
|
|
return new Pair<Symbol, JCDiagnostic>(bestSoFar.sym, bestSoFar.details);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ResolveError error class indicating that a set of symbols
|
|
* (either methods, constructors or operands) is not applicable
|
|
* given an actual arguments/type argument list.
|
|
*/
|
|
class InapplicableSymbolsError extends InapplicableSymbolError {
|
|
|
|
InapplicableSymbolsError(MethodResolutionContext context) {
|
|
super(WRONG_MTHS, "inapplicable symbols", context);
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
|
|
Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
|
|
filterCandidates(candidatesMap) :
|
|
mapCandidates();
|
|
if (filteredCandidates.isEmpty()) {
|
|
filteredCandidates = candidatesMap;
|
|
}
|
|
boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
|
|
if (filteredCandidates.size() > 1) {
|
|
JCDiagnostic err = diags.create(dkind,
|
|
null,
|
|
truncatedDiag ?
|
|
EnumSet.of(DiagnosticFlag.COMPRESSED) :
|
|
EnumSet.noneOf(DiagnosticFlag.class),
|
|
log.currentSource(),
|
|
pos,
|
|
"cant.apply.symbols",
|
|
name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
|
|
name == names.init ? site.tsym.name : name,
|
|
methodArguments(argtypes));
|
|
return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
|
|
} else if (filteredCandidates.size() == 1) {
|
|
Map.Entry<Symbol, JCDiagnostic> _e =
|
|
filteredCandidates.entrySet().iterator().next();
|
|
final Pair<Symbol, JCDiagnostic> p = new Pair<Symbol, JCDiagnostic>(_e.getKey(), _e.getValue());
|
|
JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
|
|
@Override
|
|
protected Pair<Symbol, JCDiagnostic> errCandidate() {
|
|
return p;
|
|
}
|
|
}.getDiagnostic(dkind, pos,
|
|
location, site, name, argtypes, typeargtypes);
|
|
if (truncatedDiag) {
|
|
d.setFlag(DiagnosticFlag.COMPRESSED);
|
|
}
|
|
return d;
|
|
} else {
|
|
return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
|
|
location, site, name, argtypes, typeargtypes);
|
|
}
|
|
}
|
|
//where
|
|
private Map<Symbol, JCDiagnostic> mapCandidates() {
|
|
Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
|
|
for (Candidate c : resolveContext.candidates) {
|
|
if (c.isApplicable()) continue;
|
|
candidates.put(c.sym, c.details);
|
|
}
|
|
return candidates;
|
|
}
|
|
|
|
Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
|
|
Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
|
|
for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
|
|
JCDiagnostic d = _entry.getValue();
|
|
if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
|
|
candidates.put(_entry.getKey(), d);
|
|
}
|
|
}
|
|
return candidates;
|
|
}
|
|
|
|
private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
|
|
List<JCDiagnostic> details = List.nil();
|
|
for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
|
|
Symbol sym = _entry.getKey();
|
|
JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
|
|
Kinds.kindName(sym),
|
|
sym.location(site, types),
|
|
sym.asMemberOf(site, types),
|
|
_entry.getValue());
|
|
details = details.prepend(detailDiag);
|
|
}
|
|
//typically members are visited in reverse order (see Scope)
|
|
//so we need to reverse the candidate list so that candidates
|
|
//conform to source order
|
|
return details;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* An InvalidSymbolError error class indicating that a symbol is not
|
|
* accessible from a given site
|
|
*/
|
|
class AccessError extends InvalidSymbolError {
|
|
|
|
private Env<AttrContext> env;
|
|
private Type site;
|
|
|
|
AccessError(Symbol sym) {
|
|
this(null, null, sym);
|
|
}
|
|
|
|
AccessError(Env<AttrContext> env, Type site, Symbol sym) {
|
|
super(HIDDEN, sym, "access error");
|
|
this.env = env;
|
|
this.site = site;
|
|
if (debugResolve)
|
|
log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
|
|
}
|
|
|
|
@Override
|
|
public boolean exists() {
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
if (sym.owner.type.hasTag(ERROR))
|
|
return null;
|
|
|
|
if (sym.name == names.init && sym.owner != site.tsym) {
|
|
return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
|
|
pos, location, site, name, argtypes, typeargtypes);
|
|
}
|
|
else if ((sym.flags() & PUBLIC) != 0
|
|
|| (env != null && this.site != null
|
|
&& !isAccessible(env, this.site))) {
|
|
return diags.create(dkind, log.currentSource(),
|
|
pos, "not.def.access.class.intf.cant.access",
|
|
sym, sym.location());
|
|
}
|
|
else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
|
|
return diags.create(dkind, log.currentSource(),
|
|
pos, "report.access", sym,
|
|
asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
|
|
sym.location());
|
|
}
|
|
else {
|
|
return diags.create(dkind, log.currentSource(),
|
|
pos, "not.def.public.cant.access", sym, sym.location());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* InvalidSymbolError error class indicating that an instance member
|
|
* has erroneously been accessed from a static context.
|
|
*/
|
|
class StaticError extends InvalidSymbolError {
|
|
|
|
StaticError(Symbol sym) {
|
|
super(STATICERR, sym, "static error");
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
|
|
? types.erasure(sym.type).tsym
|
|
: sym);
|
|
return diags.create(dkind, log.currentSource(), pos,
|
|
"non-static.cant.be.ref", kindName(sym), errSym);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* InvalidSymbolError error class indicating that a pair of symbols
|
|
* (either methods, constructors or operands) are ambiguous
|
|
* given an actual arguments/type argument list.
|
|
*/
|
|
class AmbiguityError extends ResolveError {
|
|
|
|
/** The other maximally specific symbol */
|
|
List<Symbol> ambiguousSyms = List.nil();
|
|
|
|
@Override
|
|
public boolean exists() {
|
|
return true;
|
|
}
|
|
|
|
AmbiguityError(Symbol sym1, Symbol sym2) {
|
|
super(AMBIGUOUS, "ambiguity error");
|
|
ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
|
|
}
|
|
|
|
private List<Symbol> flatten(Symbol sym) {
|
|
if (sym.kind == AMBIGUOUS) {
|
|
return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
|
|
} else {
|
|
return List.of(sym);
|
|
}
|
|
}
|
|
|
|
AmbiguityError addAmbiguousSymbol(Symbol s) {
|
|
ambiguousSyms = ambiguousSyms.prepend(s);
|
|
return this;
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
|
|
DiagnosticPosition pos,
|
|
Symbol location,
|
|
Type site,
|
|
Name name,
|
|
List<Type> argtypes,
|
|
List<Type> typeargtypes) {
|
|
List<Symbol> diagSyms = ambiguousSyms.reverse();
|
|
Symbol s1 = diagSyms.head;
|
|
Symbol s2 = diagSyms.tail.head;
|
|
Name sname = s1.name;
|
|
if (sname == names.init) sname = s1.owner.name;
|
|
return diags.create(dkind, log.currentSource(),
|
|
pos, "ref.ambiguous", sname,
|
|
kindName(s1),
|
|
s1,
|
|
s1.location(site, types),
|
|
kindName(s2),
|
|
s2,
|
|
s2.location(site, types));
|
|
}
|
|
|
|
/**
|
|
* If multiple applicable methods are found during overload and none of them
|
|
* is more specific than the others, attempt to merge their signatures.
|
|
*/
|
|
Symbol mergeAbstracts(Type site) {
|
|
List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
|
|
for (Symbol s : ambiguousInOrder) {
|
|
Type mt = types.memberType(site, s);
|
|
boolean found = true;
|
|
List<Type> allThrown = mt.getThrownTypes();
|
|
for (Symbol s2 : ambiguousInOrder) {
|
|
Type mt2 = types.memberType(site, s2);
|
|
if ((s2.flags() & ABSTRACT) == 0 ||
|
|
!types.overrideEquivalent(mt, mt2) ||
|
|
!types.isSameTypes(s.erasure(types).getParameterTypes(),
|
|
s2.erasure(types).getParameterTypes())) {
|
|
//ambiguity cannot be resolved
|
|
return this;
|
|
}
|
|
Type mst = mostSpecificReturnType(mt, mt2);
|
|
if (mst == null || mst != mt) {
|
|
found = false;
|
|
break;
|
|
}
|
|
allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
|
|
}
|
|
if (found) {
|
|
//all ambiguous methods were abstract and one method had
|
|
//most specific return type then others
|
|
return (allThrown == mt.getThrownTypes()) ?
|
|
s : new MethodSymbol(
|
|
s.flags(),
|
|
s.name,
|
|
types.createMethodTypeWithThrown(s.type, allThrown),
|
|
s.owner);
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
@Override
|
|
protected Symbol access(Name name, TypeSymbol location) {
|
|
Symbol firstAmbiguity = ambiguousSyms.last();
|
|
return firstAmbiguity.kind == TYP ?
|
|
types.createErrorType(name, location, firstAmbiguity.type).tsym :
|
|
firstAmbiguity;
|
|
}
|
|
}
|
|
|
|
class BadVarargsMethod extends ResolveError {
|
|
|
|
ResolveError delegatedError;
|
|
|
|
BadVarargsMethod(ResolveError delegatedError) {
|
|
super(delegatedError.kind, "badVarargs");
|
|
this.delegatedError = delegatedError;
|
|
}
|
|
|
|
@Override
|
|
public Symbol baseSymbol() {
|
|
return delegatedError.baseSymbol();
|
|
}
|
|
|
|
@Override
|
|
protected Symbol access(Name name, TypeSymbol location) {
|
|
return delegatedError.access(name, location);
|
|
}
|
|
|
|
@Override
|
|
public boolean exists() {
|
|
return true;
|
|
}
|
|
|
|
@Override
|
|
JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
|
|
return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper class for method resolution diagnostic simplification.
|
|
* Certain resolution diagnostic are rewritten as simpler diagnostic
|
|
* where the enclosing resolution diagnostic (i.e. 'inapplicable method')
|
|
* is stripped away, as it doesn't carry additional info. The logic
|
|
* for matching a given diagnostic is given in terms of a template
|
|
* hierarchy: a diagnostic template can be specified programmatically,
|
|
* so that only certain diagnostics are matched. Each templete is then
|
|
* associated with a rewriter object that carries out the task of rewtiting
|
|
* the diagnostic to a simpler one.
|
|
*/
|
|
static class MethodResolutionDiagHelper {
|
|
|
|
/**
|
|
* A diagnostic rewriter transforms a method resolution diagnostic
|
|
* into a simpler one
|
|
*/
|
|
interface DiagnosticRewriter {
|
|
JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
|
|
DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
|
|
DiagnosticType preferredKind, JCDiagnostic d);
|
|
}
|
|
|
|
/**
|
|
* A diagnostic template is made up of two ingredients: (i) a regular
|
|
* expression for matching a diagnostic key and (ii) a list of sub-templates
|
|
* for matching diagnostic arguments.
|
|
*/
|
|
static class Template {
|
|
|
|
/** regex used to match diag key */
|
|
String regex;
|
|
|
|
/** templates used to match diagnostic args */
|
|
Template[] subTemplates;
|
|
|
|
Template(String key, Template... subTemplates) {
|
|
this.regex = key;
|
|
this.subTemplates = subTemplates;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the regex matches the diagnostic key and if
|
|
* all diagnostic arguments are matches by corresponding sub-templates.
|
|
*/
|
|
boolean matches(Object o) {
|
|
JCDiagnostic d = (JCDiagnostic)o;
|
|
Object[] args = d.getArgs();
|
|
if (!d.getCode().matches(regex) ||
|
|
subTemplates.length != d.getArgs().length) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < args.length ; i++) {
|
|
if (!subTemplates[i].matches(args[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/** a dummy template that match any diagnostic argument */
|
|
static final Template skip = new Template("") {
|
|
@Override
|
|
boolean matches(Object d) {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/** rewriter map used for method resolution simplification */
|
|
static final Map<Template, DiagnosticRewriter> rewriters =
|
|
new LinkedHashMap<Template, DiagnosticRewriter>();
|
|
|
|
static {
|
|
String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
|
|
rewriters.put(new Template(argMismatchRegex, skip),
|
|
new DiagnosticRewriter() {
|
|
@Override
|
|
public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
|
|
DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
|
|
DiagnosticType preferredKind, JCDiagnostic d) {
|
|
JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
|
|
DiagnosticPosition pos = d.getDiagnosticPosition();
|
|
if (pos == null) {
|
|
pos = preferedPos;
|
|
}
|
|
return diags.create(preferredKind, preferredSource, pos,
|
|
"prob.found.req", cause);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
enum MethodResolutionPhase {
|
|
BASIC(false, false),
|
|
BOX(true, false),
|
|
VARARITY(true, true) {
|
|
@Override
|
|
public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
|
|
//Check invariants (see {@code LookupHelper.shouldStop})
|
|
Assert.check(bestSoFar.kind >= ERRONEOUS && bestSoFar.kind != AMBIGUOUS);
|
|
if (sym.kind < ERRONEOUS) {
|
|
//varargs resolution successful
|
|
return sym;
|
|
} else {
|
|
//pick best error
|
|
switch (bestSoFar.kind) {
|
|
case WRONG_MTH:
|
|
case WRONG_MTHS:
|
|
//Override previous errors if they were caused by argument mismatch.
|
|
//This generally means preferring current symbols - but we need to pay
|
|
//attention to the fact that the varargs lookup returns 'less' candidates
|
|
//than the previous rounds, and adjust that accordingly.
|
|
switch (sym.kind) {
|
|
case WRONG_MTH:
|
|
//if the previous round matched more than one method, return that
|
|
//result instead
|
|
return bestSoFar.kind == WRONG_MTHS ?
|
|
bestSoFar : sym;
|
|
case ABSENT_MTH:
|
|
//do not override erroneous symbol if the arity lookup did not
|
|
//match any method
|
|
return bestSoFar;
|
|
case WRONG_MTHS:
|
|
default:
|
|
//safe to override
|
|
return sym;
|
|
}
|
|
default:
|
|
//otherwise, return first error
|
|
return bestSoFar;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
final boolean isBoxingRequired;
|
|
final boolean isVarargsRequired;
|
|
|
|
MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
|
|
this.isBoxingRequired = isBoxingRequired;
|
|
this.isVarargsRequired = isVarargsRequired;
|
|
}
|
|
|
|
public boolean isBoxingRequired() {
|
|
return isBoxingRequired;
|
|
}
|
|
|
|
public boolean isVarargsRequired() {
|
|
return isVarargsRequired;
|
|
}
|
|
|
|
public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
|
|
return (varargsEnabled || !isVarargsRequired) &&
|
|
(boxingEnabled || !isBoxingRequired);
|
|
}
|
|
|
|
public Symbol mergeResults(Symbol prev, Symbol sym) {
|
|
return sym;
|
|
}
|
|
}
|
|
|
|
final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
|
|
|
|
/**
|
|
* A resolution context is used to keep track of intermediate results of
|
|
* overload resolution, such as list of method that are not applicable
|
|
* (used to generate more precise diagnostics) and so on. Resolution contexts
|
|
* can be nested - this means that when each overload resolution routine should
|
|
* work within the resolution context it created.
|
|
*/
|
|
class MethodResolutionContext {
|
|
|
|
private List<Candidate> candidates = List.nil();
|
|
|
|
MethodResolutionPhase step = null;
|
|
|
|
MethodCheck methodCheck = resolveMethodCheck;
|
|
|
|
private boolean internalResolution = false;
|
|
private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
|
|
|
|
void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
|
|
Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
|
|
candidates = candidates.append(c);
|
|
}
|
|
|
|
void addApplicableCandidate(Symbol sym, Type mtype) {
|
|
Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
|
|
candidates = candidates.append(c);
|
|
}
|
|
|
|
DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
|
|
DeferredAttrContext parent = (pendingResult == null)
|
|
? deferredAttr.emptyDeferredAttrContext
|
|
: pendingResult.checkContext.deferredAttrContext();
|
|
return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
|
|
inferenceContext, parent, warn);
|
|
}
|
|
|
|
/**
|
|
* This class represents an overload resolution candidate. There are two
|
|
* kinds of candidates: applicable methods and inapplicable methods;
|
|
* applicable methods have a pointer to the instantiated method type,
|
|
* while inapplicable candidates contain further details about the
|
|
* reason why the method has been considered inapplicable.
|
|
*/
|
|
@SuppressWarnings("overrides")
|
|
class Candidate {
|
|
|
|
final MethodResolutionPhase step;
|
|
final Symbol sym;
|
|
final JCDiagnostic details;
|
|
final Type mtype;
|
|
|
|
private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
|
|
this.step = step;
|
|
this.sym = sym;
|
|
this.details = details;
|
|
this.mtype = mtype;
|
|
}
|
|
|
|
@Override
|
|
public boolean equals(Object o) {
|
|
if (o instanceof Candidate) {
|
|
Symbol s1 = this.sym;
|
|
Symbol s2 = ((Candidate)o).sym;
|
|
if ((s1 != s2 &&
|
|
(s1.overrides(s2, s1.owner.type.tsym, types, false) ||
|
|
(s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
|
|
((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
boolean isApplicable() {
|
|
return mtype != null;
|
|
}
|
|
}
|
|
|
|
DeferredAttr.AttrMode attrMode() {
|
|
return attrMode;
|
|
}
|
|
|
|
boolean internal() {
|
|
return internalResolution;
|
|
}
|
|
}
|
|
|
|
MethodResolutionContext currentResolutionContext = null;
|
|
}
|