837 lines
30 KiB
Java
837 lines
30 KiB
Java
/*
|
|
* Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package sun.dc;
|
|
|
|
import java.awt.Shape;
|
|
import java.awt.BasicStroke;
|
|
import java.awt.geom.Path2D;
|
|
import java.awt.geom.PathIterator;
|
|
import java.awt.geom.AffineTransform;
|
|
|
|
import sun.awt.geom.PathConsumer2D;
|
|
import sun.java2d.pipe.Region;
|
|
import sun.java2d.pipe.AATileGenerator;
|
|
import sun.java2d.pipe.RenderingEngine;
|
|
|
|
import sun.dc.pr.Rasterizer;
|
|
import sun.dc.pr.PathStroker;
|
|
import sun.dc.pr.PathDasher;
|
|
import sun.dc.pr.PRException;
|
|
import sun.dc.path.PathConsumer;
|
|
import sun.dc.path.PathException;
|
|
import sun.dc.path.FastPathProducer;
|
|
|
|
public class DuctusRenderingEngine extends RenderingEngine {
|
|
static final float PenUnits = 0.01f;
|
|
static final int MinPenUnits = 100;
|
|
static final int MinPenUnitsAA = 20;
|
|
static final float MinPenSizeAA = PenUnits * MinPenUnitsAA;
|
|
|
|
static final float UPPER_BND = Float.MAX_VALUE / 2.0f;
|
|
static final float LOWER_BND = -UPPER_BND;
|
|
|
|
private static final int RasterizerCaps[] = {
|
|
Rasterizer.BUTT, Rasterizer.ROUND, Rasterizer.SQUARE
|
|
};
|
|
|
|
private static final int RasterizerCorners[] = {
|
|
Rasterizer.MITER, Rasterizer.ROUND, Rasterizer.BEVEL
|
|
};
|
|
|
|
static float[] getTransformMatrix(AffineTransform transform) {
|
|
float matrix[] = new float[4];
|
|
double dmatrix[] = new double[6];
|
|
transform.getMatrix(dmatrix);
|
|
for (int i = 0; i < 4; i++) {
|
|
matrix[i] = (float) dmatrix[i];
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public Shape createStrokedShape(Shape src,
|
|
float width,
|
|
int caps,
|
|
int join,
|
|
float miterlimit,
|
|
float dashes[],
|
|
float dashphase)
|
|
{
|
|
FillAdapter filler = new FillAdapter();
|
|
PathStroker stroker = new PathStroker(filler);
|
|
PathDasher dasher = null;
|
|
|
|
try {
|
|
PathConsumer consumer;
|
|
|
|
stroker.setPenDiameter(width);
|
|
stroker.setPenT4(null);
|
|
stroker.setCaps(RasterizerCaps[caps]);
|
|
stroker.setCorners(RasterizerCorners[join], miterlimit);
|
|
if (dashes != null) {
|
|
dasher = new PathDasher(stroker);
|
|
dasher.setDash(dashes, dashphase);
|
|
dasher.setDashT4(null);
|
|
consumer = dasher;
|
|
} else {
|
|
consumer = stroker;
|
|
}
|
|
|
|
feedConsumer(consumer, src.getPathIterator(null));
|
|
} finally {
|
|
stroker.dispose();
|
|
if (dasher != null) {
|
|
dasher.dispose();
|
|
}
|
|
}
|
|
|
|
return filler.getShape();
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public void strokeTo(Shape src,
|
|
AffineTransform transform,
|
|
BasicStroke bs,
|
|
boolean thin,
|
|
boolean normalize,
|
|
boolean antialias,
|
|
PathConsumer2D sr)
|
|
{
|
|
PathStroker stroker = new PathStroker(sr);
|
|
PathConsumer consumer = stroker;
|
|
|
|
float matrix[] = null;
|
|
if (!thin) {
|
|
stroker.setPenDiameter(bs.getLineWidth());
|
|
if (transform != null) {
|
|
matrix = getTransformMatrix(transform);
|
|
}
|
|
stroker.setPenT4(matrix);
|
|
stroker.setPenFitting(PenUnits, MinPenUnits);
|
|
}
|
|
stroker.setCaps(RasterizerCaps[bs.getEndCap()]);
|
|
stroker.setCorners(RasterizerCorners[bs.getLineJoin()],
|
|
bs.getMiterLimit());
|
|
float[] dashes = bs.getDashArray();
|
|
if (dashes != null) {
|
|
PathDasher dasher = new PathDasher(stroker);
|
|
dasher.setDash(dashes, bs.getDashPhase());
|
|
if (transform != null && matrix == null) {
|
|
matrix = getTransformMatrix(transform);
|
|
}
|
|
dasher.setDashT4(matrix);
|
|
consumer = dasher;
|
|
}
|
|
|
|
try {
|
|
PathIterator pi = src.getPathIterator(transform);
|
|
|
|
feedConsumer(pi, consumer, normalize, 0.25f);
|
|
} catch (PathException e) {
|
|
throw new InternalError("Unable to Stroke shape ("+
|
|
e.getMessage()+")", e);
|
|
} finally {
|
|
while (consumer != null && consumer != sr) {
|
|
PathConsumer next = consumer.getConsumer();
|
|
consumer.dispose();
|
|
consumer = next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Feed a path from a PathIterator to a Ductus PathConsumer.
|
|
*/
|
|
public static void feedConsumer(PathIterator pi, PathConsumer consumer,
|
|
boolean normalize, float norm)
|
|
throws PathException
|
|
{
|
|
consumer.beginPath();
|
|
boolean pathClosed = false;
|
|
boolean skip = false;
|
|
boolean subpathStarted = false;
|
|
float mx = 0.0f;
|
|
float my = 0.0f;
|
|
float point[] = new float[6];
|
|
float rnd = (0.5f - norm);
|
|
float ax = 0.0f;
|
|
float ay = 0.0f;
|
|
|
|
while (!pi.isDone()) {
|
|
int type = pi.currentSegment(point);
|
|
if (pathClosed == true) {
|
|
pathClosed = false;
|
|
if (type != PathIterator.SEG_MOVETO) {
|
|
// Force current point back to last moveto point
|
|
consumer.beginSubpath(mx, my);
|
|
subpathStarted = true;
|
|
}
|
|
}
|
|
if (normalize) {
|
|
int index;
|
|
switch (type) {
|
|
case PathIterator.SEG_CUBICTO:
|
|
index = 4;
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
index = 2;
|
|
break;
|
|
case PathIterator.SEG_MOVETO:
|
|
case PathIterator.SEG_LINETO:
|
|
index = 0;
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
default:
|
|
index = -1;
|
|
break;
|
|
}
|
|
if (index >= 0) {
|
|
float ox = point[index];
|
|
float oy = point[index+1];
|
|
float newax = (float) Math.floor(ox + rnd) + norm;
|
|
float neway = (float) Math.floor(oy + rnd) + norm;
|
|
point[index] = newax;
|
|
point[index+1] = neway;
|
|
newax -= ox;
|
|
neway -= oy;
|
|
switch (type) {
|
|
case PathIterator.SEG_CUBICTO:
|
|
point[0] += ax;
|
|
point[1] += ay;
|
|
point[2] += newax;
|
|
point[3] += neway;
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
point[0] += (newax + ax) / 2;
|
|
point[1] += (neway + ay) / 2;
|
|
break;
|
|
case PathIterator.SEG_MOVETO:
|
|
case PathIterator.SEG_LINETO:
|
|
case PathIterator.SEG_CLOSE:
|
|
break;
|
|
}
|
|
ax = newax;
|
|
ay = neway;
|
|
}
|
|
}
|
|
switch (type) {
|
|
case PathIterator.SEG_MOVETO:
|
|
|
|
/* Checking SEG_MOVETO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
|
|
* and Infinity values. Skipping next path segment in case of
|
|
* invalid data.
|
|
*/
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND)
|
|
{
|
|
mx = point[0];
|
|
my = point[1];
|
|
consumer.beginSubpath(mx, my);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
skip = true;
|
|
}
|
|
break;
|
|
case PathIterator.SEG_LINETO:
|
|
/* Checking SEG_LINETO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
|
|
* and Infinity values. Ignoring current path segment in case
|
|
* of invalid data. If segment is skipped its endpoint
|
|
* (if valid) is used to begin new subpath.
|
|
*/
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND)
|
|
{
|
|
if (skip) {
|
|
consumer.beginSubpath(point[0], point[1]);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
consumer.appendLine(point[0], point[1]);
|
|
}
|
|
}
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
// Quadratic curves take two points
|
|
|
|
/* Checking SEG_QUADTO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
|
|
* and Infinity values. Ignoring current path segment in case
|
|
* of invalid endpoints's data. Equivalent to the SEG_LINETO
|
|
* if endpoint coordinates are valid but there are invalid data
|
|
* among other coordinates
|
|
*/
|
|
if (point[2] < UPPER_BND && point[2] > LOWER_BND &&
|
|
point[3] < UPPER_BND && point[3] > LOWER_BND)
|
|
{
|
|
if (skip) {
|
|
consumer.beginSubpath(point[2], point[3]);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND)
|
|
{
|
|
consumer.appendQuadratic(point[0], point[1],
|
|
point[2], point[3]);
|
|
} else {
|
|
consumer.appendLine(point[2], point[3]);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PathIterator.SEG_CUBICTO:
|
|
// Cubic curves take three points
|
|
|
|
/* Checking SEG_CUBICTO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
|
|
* and Infinity values. Ignoring current path segment in case
|
|
* of invalid endpoints's data. Equivalent to the SEG_LINETO
|
|
* if endpoint coordinates are valid but there are invalid data
|
|
* among other coordinates
|
|
*/
|
|
if (point[4] < UPPER_BND && point[4] > LOWER_BND &&
|
|
point[5] < UPPER_BND && point[5] > LOWER_BND)
|
|
{
|
|
if (skip) {
|
|
consumer.beginSubpath(point[4], point[5]);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND &&
|
|
point[2] < UPPER_BND && point[2] > LOWER_BND &&
|
|
point[3] < UPPER_BND && point[3] > LOWER_BND)
|
|
{
|
|
consumer.appendCubic(point[0], point[1],
|
|
point[2], point[3],
|
|
point[4], point[5]);
|
|
} else {
|
|
consumer.appendLine(point[4], point[5]);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
if (subpathStarted) {
|
|
consumer.closedSubpath();
|
|
subpathStarted = false;
|
|
pathClosed = true;
|
|
}
|
|
break;
|
|
}
|
|
pi.next();
|
|
}
|
|
|
|
consumer.endPath();
|
|
}
|
|
|
|
private static Rasterizer theRasterizer;
|
|
|
|
public synchronized static Rasterizer getRasterizer() {
|
|
Rasterizer r = theRasterizer;
|
|
if (r == null) {
|
|
r = new Rasterizer();
|
|
} else {
|
|
theRasterizer = null;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
public synchronized static void dropRasterizer(Rasterizer r) {
|
|
r.reset();
|
|
theRasterizer = r;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public float getMinimumAAPenSize() {
|
|
return MinPenSizeAA;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public AATileGenerator getAATileGenerator(Shape s,
|
|
AffineTransform at,
|
|
Region clip,
|
|
BasicStroke bs,
|
|
boolean thin,
|
|
boolean normalize,
|
|
int bbox[])
|
|
{
|
|
Rasterizer r = getRasterizer();
|
|
PathIterator pi = s.getPathIterator(at);
|
|
|
|
if (bs != null) {
|
|
float matrix[] = null;
|
|
r.setUsage(Rasterizer.STROKE);
|
|
if (thin) {
|
|
r.setPenDiameter(MinPenSizeAA);
|
|
} else {
|
|
r.setPenDiameter(bs.getLineWidth());
|
|
if (at != null) {
|
|
matrix = getTransformMatrix(at);
|
|
r.setPenT4(matrix);
|
|
}
|
|
r.setPenFitting(PenUnits, MinPenUnitsAA);
|
|
}
|
|
r.setCaps(RasterizerCaps[bs.getEndCap()]);
|
|
r.setCorners(RasterizerCorners[bs.getLineJoin()],
|
|
bs.getMiterLimit());
|
|
float[] dashes = bs.getDashArray();
|
|
if (dashes != null) {
|
|
r.setDash(dashes, bs.getDashPhase());
|
|
if (at != null && matrix == null) {
|
|
matrix = getTransformMatrix(at);
|
|
}
|
|
r.setDashT4(matrix);
|
|
}
|
|
} else {
|
|
r.setUsage(pi.getWindingRule() == PathIterator.WIND_EVEN_ODD
|
|
? Rasterizer.EOFILL
|
|
: Rasterizer.NZFILL);
|
|
}
|
|
|
|
r.beginPath();
|
|
{
|
|
boolean pathClosed = false;
|
|
boolean skip = false;
|
|
boolean subpathStarted = false;
|
|
float mx = 0.0f;
|
|
float my = 0.0f;
|
|
float point[] = new float[6];
|
|
float ax = 0.0f;
|
|
float ay = 0.0f;
|
|
|
|
while (!pi.isDone()) {
|
|
int type = pi.currentSegment(point);
|
|
if (pathClosed == true) {
|
|
pathClosed = false;
|
|
if (type != PathIterator.SEG_MOVETO) {
|
|
// Force current point back to last moveto point
|
|
r.beginSubpath(mx, my);
|
|
subpathStarted = true;
|
|
}
|
|
}
|
|
if (normalize) {
|
|
int index;
|
|
switch (type) {
|
|
case PathIterator.SEG_CUBICTO:
|
|
index = 4;
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
index = 2;
|
|
break;
|
|
case PathIterator.SEG_MOVETO:
|
|
case PathIterator.SEG_LINETO:
|
|
index = 0;
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
default:
|
|
index = -1;
|
|
break;
|
|
}
|
|
if (index >= 0) {
|
|
float ox = point[index];
|
|
float oy = point[index+1];
|
|
float newax = (float) Math.floor(ox) + 0.5f;
|
|
float neway = (float) Math.floor(oy) + 0.5f;
|
|
point[index] = newax;
|
|
point[index+1] = neway;
|
|
newax -= ox;
|
|
neway -= oy;
|
|
switch (type) {
|
|
case PathIterator.SEG_CUBICTO:
|
|
point[0] += ax;
|
|
point[1] += ay;
|
|
point[2] += newax;
|
|
point[3] += neway;
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
point[0] += (newax + ax) / 2;
|
|
point[1] += (neway + ay) / 2;
|
|
break;
|
|
case PathIterator.SEG_MOVETO:
|
|
case PathIterator.SEG_LINETO:
|
|
case PathIterator.SEG_CLOSE:
|
|
break;
|
|
}
|
|
ax = newax;
|
|
ay = neway;
|
|
}
|
|
}
|
|
switch (type) {
|
|
case PathIterator.SEG_MOVETO:
|
|
|
|
/* Checking SEG_MOVETO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
|
|
* and Infinity values. Skipping next path segment in case
|
|
* of invalid data.
|
|
*/
|
|
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND)
|
|
{
|
|
mx = point[0];
|
|
my = point[1];
|
|
r.beginSubpath(mx, my);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
skip = true;
|
|
}
|
|
break;
|
|
|
|
case PathIterator.SEG_LINETO:
|
|
/* Checking SEG_LINETO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles
|
|
* NaN and Infinity values. Ignoring current path segment
|
|
* in case of invalid data. If segment is skipped its
|
|
* endpoint (if valid) is used to begin new subpath.
|
|
*/
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND)
|
|
{
|
|
if (skip) {
|
|
r.beginSubpath(point[0], point[1]);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
r.appendLine(point[0], point[1]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PathIterator.SEG_QUADTO:
|
|
// Quadratic curves take two points
|
|
|
|
/* Checking SEG_QUADTO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles
|
|
* NaN and Infinity values. Ignoring current path segment
|
|
* in case of invalid endpoints's data. Equivalent to the
|
|
* SEG_LINETO if endpoint coordinates are valid but there
|
|
* are invalid data among other coordinates
|
|
*/
|
|
if (point[2] < UPPER_BND && point[2] > LOWER_BND &&
|
|
point[3] < UPPER_BND && point[3] > LOWER_BND)
|
|
{
|
|
if (skip) {
|
|
r.beginSubpath(point[2], point[3]);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND)
|
|
{
|
|
r.appendQuadratic(point[0], point[1],
|
|
point[2], point[3]);
|
|
} else {
|
|
r.appendLine(point[2], point[3]);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PathIterator.SEG_CUBICTO:
|
|
// Cubic curves take three points
|
|
|
|
/* Checking SEG_CUBICTO coordinates if they are out of the
|
|
* [LOWER_BND, UPPER_BND] range. This check also handles
|
|
* NaN and Infinity values. Ignoring current path segment
|
|
* in case of invalid endpoints's data. Equivalent to the
|
|
* SEG_LINETO if endpoint coordinates are valid but there
|
|
* are invalid data among other coordinates
|
|
*/
|
|
|
|
if (point[4] < UPPER_BND && point[4] > LOWER_BND &&
|
|
point[5] < UPPER_BND && point[5] > LOWER_BND)
|
|
{
|
|
if (skip) {
|
|
r.beginSubpath(point[4], point[5]);
|
|
subpathStarted = true;
|
|
skip = false;
|
|
} else {
|
|
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
|
|
point[1] < UPPER_BND && point[1] > LOWER_BND &&
|
|
point[2] < UPPER_BND && point[2] > LOWER_BND &&
|
|
point[3] < UPPER_BND && point[3] > LOWER_BND)
|
|
{
|
|
r.appendCubic(point[0], point[1],
|
|
point[2], point[3],
|
|
point[4], point[5]);
|
|
} else {
|
|
r.appendLine(point[4], point[5]);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
if (subpathStarted) {
|
|
r.closedSubpath();
|
|
subpathStarted = false;
|
|
pathClosed = true;
|
|
}
|
|
break;
|
|
}
|
|
pi.next();
|
|
}
|
|
}
|
|
|
|
try {
|
|
r.endPath();
|
|
r.getAlphaBox(bbox);
|
|
clip.clipBoxToBounds(bbox);
|
|
if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
|
|
dropRasterizer(r);
|
|
return null;
|
|
}
|
|
r.setOutputArea(bbox[0], bbox[1],
|
|
bbox[2] - bbox[0],
|
|
bbox[3] - bbox[1]);
|
|
} catch (PRException e) {
|
|
/*
|
|
* This exeption is thrown from the native part of the Ductus
|
|
* (only in case of a debug build) to indicate that some
|
|
* segments of the path have very large coordinates.
|
|
* See 4485298 for more info.
|
|
*/
|
|
System.err.println("DuctusRenderingEngine.getAATileGenerator: "+e);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public AATileGenerator getAATileGenerator(double x, double y,
|
|
double dx1, double dy1,
|
|
double dx2, double dy2,
|
|
double lw1, double lw2,
|
|
Region clip,
|
|
int bbox[])
|
|
{
|
|
// REMIND: Deal with large coordinates!
|
|
double ldx1, ldy1, ldx2, ldy2;
|
|
boolean innerpgram = (lw1 > 0 && lw2 > 0);
|
|
|
|
if (innerpgram) {
|
|
ldx1 = dx1 * lw1;
|
|
ldy1 = dy1 * lw1;
|
|
ldx2 = dx2 * lw2;
|
|
ldy2 = dy2 * lw2;
|
|
x -= (ldx1 + ldx2) / 2.0;
|
|
y -= (ldy1 + ldy2) / 2.0;
|
|
dx1 += ldx1;
|
|
dy1 += ldy1;
|
|
dx2 += ldx2;
|
|
dy2 += ldy2;
|
|
if (lw1 > 1 && lw2 > 1) {
|
|
// Inner parallelogram was entirely consumed by stroke...
|
|
innerpgram = false;
|
|
}
|
|
} else {
|
|
ldx1 = ldy1 = ldx2 = ldy2 = 0;
|
|
}
|
|
|
|
Rasterizer r = getRasterizer();
|
|
|
|
r.setUsage(Rasterizer.EOFILL);
|
|
|
|
r.beginPath();
|
|
r.beginSubpath((float) x, (float) y);
|
|
r.appendLine((float) (x+dx1), (float) (y+dy1));
|
|
r.appendLine((float) (x+dx1+dx2), (float) (y+dy1+dy2));
|
|
r.appendLine((float) (x+dx2), (float) (y+dy2));
|
|
r.closedSubpath();
|
|
if (innerpgram) {
|
|
x += ldx1 + ldx2;
|
|
y += ldy1 + ldy2;
|
|
dx1 -= 2.0 * ldx1;
|
|
dy1 -= 2.0 * ldy1;
|
|
dx2 -= 2.0 * ldx2;
|
|
dy2 -= 2.0 * ldy2;
|
|
r.beginSubpath((float) x, (float) y);
|
|
r.appendLine((float) (x+dx1), (float) (y+dy1));
|
|
r.appendLine((float) (x+dx1+dx2), (float) (y+dy1+dy2));
|
|
r.appendLine((float) (x+dx2), (float) (y+dy2));
|
|
r.closedSubpath();
|
|
}
|
|
|
|
try {
|
|
r.endPath();
|
|
r.getAlphaBox(bbox);
|
|
clip.clipBoxToBounds(bbox);
|
|
if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
|
|
dropRasterizer(r);
|
|
return null;
|
|
}
|
|
r.setOutputArea(bbox[0], bbox[1],
|
|
bbox[2] - bbox[0],
|
|
bbox[3] - bbox[1]);
|
|
} catch (PRException e) {
|
|
/*
|
|
* This exeption is thrown from the native part of the Ductus
|
|
* (only in case of a debug build) to indicate that some
|
|
* segments of the path have very large coordinates.
|
|
* See 4485298 for more info.
|
|
*/
|
|
System.err.println("DuctusRenderingEngine.getAATileGenerator: "+e);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
private void feedConsumer(PathConsumer consumer, PathIterator pi) {
|
|
try {
|
|
consumer.beginPath();
|
|
boolean pathClosed = false;
|
|
float mx = 0.0f;
|
|
float my = 0.0f;
|
|
float point[] = new float[6];
|
|
|
|
while (!pi.isDone()) {
|
|
int type = pi.currentSegment(point);
|
|
if (pathClosed == true) {
|
|
pathClosed = false;
|
|
if (type != PathIterator.SEG_MOVETO) {
|
|
// Force current point back to last moveto point
|
|
consumer.beginSubpath(mx, my);
|
|
}
|
|
}
|
|
switch (type) {
|
|
case PathIterator.SEG_MOVETO:
|
|
mx = point[0];
|
|
my = point[1];
|
|
consumer.beginSubpath(point[0], point[1]);
|
|
break;
|
|
case PathIterator.SEG_LINETO:
|
|
consumer.appendLine(point[0], point[1]);
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
consumer.appendQuadratic(point[0], point[1],
|
|
point[2], point[3]);
|
|
break;
|
|
case PathIterator.SEG_CUBICTO:
|
|
consumer.appendCubic(point[0], point[1],
|
|
point[2], point[3],
|
|
point[4], point[5]);
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
consumer.closedSubpath();
|
|
pathClosed = true;
|
|
break;
|
|
}
|
|
pi.next();
|
|
}
|
|
|
|
consumer.endPath();
|
|
} catch (PathException e) {
|
|
throw new InternalError("Unable to Stroke shape ("+
|
|
e.getMessage()+")", e);
|
|
}
|
|
}
|
|
|
|
private class FillAdapter implements PathConsumer {
|
|
boolean closed;
|
|
Path2D.Float path;
|
|
|
|
public FillAdapter() {
|
|
// Ductus only supplies float coordinates so
|
|
// Path2D.Double is not necessary here.
|
|
path = new Path2D.Float(Path2D.WIND_NON_ZERO);
|
|
}
|
|
|
|
public Shape getShape() {
|
|
return path;
|
|
}
|
|
|
|
public void dispose() {
|
|
}
|
|
|
|
public PathConsumer getConsumer() {
|
|
return null;
|
|
}
|
|
|
|
public void beginPath() {}
|
|
|
|
public void beginSubpath(float x0, float y0) {
|
|
if (closed) {
|
|
path.closePath();
|
|
closed = false;
|
|
}
|
|
path.moveTo(x0, y0);
|
|
}
|
|
|
|
public void appendLine(float x1, float y1) {
|
|
path.lineTo(x1, y1);
|
|
}
|
|
|
|
public void appendQuadratic(float xm, float ym, float x1, float y1) {
|
|
path.quadTo(xm, ym, x1, y1);
|
|
}
|
|
|
|
public void appendCubic(float xm, float ym,
|
|
float xn, float yn,
|
|
float x1, float y1) {
|
|
path.curveTo(xm, ym, xn, yn, x1, y1);
|
|
}
|
|
|
|
public void closedSubpath() {
|
|
closed = true;
|
|
}
|
|
|
|
public void endPath() {
|
|
if (closed) {
|
|
path.closePath();
|
|
closed = false;
|
|
}
|
|
}
|
|
|
|
public void useProxy(FastPathProducer proxy)
|
|
throws PathException
|
|
{
|
|
proxy.sendTo(this);
|
|
}
|
|
|
|
public long getCPathConsumer() {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|